Last active
November 1, 2024 15:18
-
-
Save jkclem/4ca696e3a3a0effe0d3ee2786051665c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
plt.figure(figsize=(12, 5), dpi= 80, facecolor='w', edgecolor='k') | |
plt.subplot(1, 2, 1) | |
plt.plot(mcmc_log_mod.raw_beta_distr[0], mcmc_log_mod.raw_beta_distr[1]) | |
plt.title('Simulated Raw Joint Distribution of the Coefficients', fontsize=12) | |
plt.xlabel('Intercept', fontsize=10) | |
plt.ylabel('Coefficient of Price Percentile', fontsize=10) | |
plt.subplot(1, 2, 2) | |
plt.plot(mcmc_log_mod.beta_distr[0], mcmc_log_mod.beta_distr[1]) | |
plt.title('Simulated Joint Distribution of the Coefficients without Burn-in', fontsize=12) | |
plt.xlabel('Intercept', fontsize=10) | |
plt.ylabel('Coefficient of Price Percentile', fontsize=10) | |
plt.show(); | |
plt.figure(figsize=(12, 5), dpi= 80, facecolor='w', edgecolor='k') | |
plt.subplot(1, 2, 1) | |
plt.hist(mcmc_log_mod.beta_distr[0], density=True) | |
plt.title(f'Simulated Distr. of Intercept with {100 * (1-cred_int_alpha)}% Cred. Int.', | |
fontsize=12) | |
plt.xlabel('Intercept', fontsize=10) | |
plt.ylabel('Density', fontsize=10) | |
plt.axvline(x=mcmc_log_mod.cred_ints[0,0], color='r', linestyle='dashed', linewidth=2) | |
plt.axvline(x=mcmc_log_mod.cred_ints[0,1], color='r', linestyle='dashed', linewidth=2) | |
plt.subplot(1, 2, 2) | |
plt.hist(mcmc_log_mod.beta_distr[1], density=True) | |
plt.title(f'Simulated Distr. of Price Percentile Coef. with {int(100 * (1-cred_int_alpha))}% Cred. Int.', | |
fontsize=12) | |
plt.xlabel('Price Percentile Coefficient', fontsize=10) | |
plt.ylabel('Density', fontsize=10) | |
plt.axvline(x=mcmc_log_mod.cred_ints[1,0], color='r', linestyle='dashed', linewidth=2) | |
plt.axvline(x=mcmc_log_mod.cred_ints[1,1], color='r', linestyle='dashed', linewidth=2) | |
plt.show(); | |
# to make the regression line | |
x_ = np.arange(my_data[vars_of_interest[0]].min(), | |
my_data[vars_of_interest[0]].max(), | |
step=0.01) | |
x_ = x_.reshape((-1, 1)) | |
y_ = mcmc_log_mod.predict(x_) | |
plt.figure(figsize=(12, 5), dpi= 80, facecolor='w', edgecolor='k') | |
plt.plot(x_, y_, '-', color='r') | |
plt.scatter(X, y) | |
plt.hlines(xmin=x_[0], xmax=x_[-1], y=boundary, color='g', linestyle='dashed', linewidth=2) | |
plt.title('Price Percentile vs. Probability of Being Chocolate', fontsize=15) | |
plt.xlabel('Price Percentile', fontsize=15) | |
plt.ylabel('Probability of Being Chocolate', fontsize=15) | |
plt.show; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment