Skip to content

Instantly share code, notes, and snippets.

@jkfurtney
Last active November 28, 2023 19:59
Show Gist options
  • Save jkfurtney/f6bce04fb32e5956f5aaa63faa050743 to your computer and use it in GitHub Desktop.
Save jkfurtney/f6bce04fb32e5956f5aaa63faa050743 to your computer and use it in GitHub Desktop.
from scipy.spatial import cKDTree
def show_actual_predicted(actual, predicted, target_unit=""):
assert len(actual.shape)==1
assert len(predicted.shape)==1
fig = plt.figure(constrained_layout=True, figsize=(15, 10))
gs = fig.add_gridspec(3, 5) # vert the horiz
ax1 = fig.add_subplot(gs[0:2, 0:2]) # scatter dim
ax2 = fig.add_subplot(gs[0:2, 2:4]) # scatter percent
ax3 = fig.add_subplot(gs[0:2, 4]) # target hist
ax4 = fig.add_subplot(gs[2, :2]) # dimensional error hist
ax5 = fig.add_subplot(gs[2, 2:4]) # percent error hist
#ax6 = fig.add_subplot(gs[2, 4]) # text input
error = actual-predicted
data_bc_error = (error) / actual
data_bc_error = data_bc_error * 100
points = np.array([error, actual]).T
dist = np.log10(np.mean(cKDTree(points).query(points, k=100)[0], axis=1))
order = np.argsort(dist)[::-1]
dist = dist[order]
p_error = np.array(error)[order]
p_actual = np.array(actual)[order]
ax1.scatter(p_error, p_actual, c=dist, cmap=plt.cm.get_cmap('jet').reversed(), s=2)
ax1.set_ylabel(f"Actual [{target_unit}]")
ax1.set_xlabel(f"Error [{target_unit}]")
ax1.axvline(0, linestyle='--', color='k', lw=1.5)
points = np.array([data_bc_error, actual]).T
dist = np.log10(np.mean(cKDTree(points).query(points, k=100)[0], axis=1))
order = np.argsort(dist)[::-1]
dist = dist[order]
p_error = np.array(data_bc_error)[order]
p_actual = np.array(actual)[order]
ax2.scatter(p_error, p_actual, c=dist, cmap=plt.cm.get_cmap('jet').reversed(), s=2)
ax2.set_ylabel(f"Actual [{target_unit}]")
ax2.set_xlabel("Error %")
ax2.axvline(0, linestyle='--', color='k', lw=1.5)
ax3.axvline(0, linestyle='--', color='k', lw=1.5)
ax3.grid(axis='y')
ax3.set_xlabel('Count ')
ax3.set_ylabel(f'Actual [{target_unit}]')
ax3.hist(actual, bins=200, orientation="horizontal");
ax4.hist(actual-predicted, bins=200)
ax4.axvline(0, linestyle='--', color='k', lw=1.5)
ax4.set_xlabel(f'Error [{target_unit}]')
ax4.set_ylabel('Count')
ax5.hist(data_bc_error, bins=200)
ax5.axvline(0, linestyle='--', color='k', lw=1.5)
ax5.set_xlabel('Error %')
ax5.set_ylabel('Count')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment