Created
March 6, 2018 20:40
-
-
Save jknowles/9f575f7eb97fad090e67e8bbc80185bf to your computer and use it in GitHub Desktop.
Robust Prediction Intervals for LM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
predict.robust <- function(model, data, robust_vcov = NULL, level = 0.95, | |
interval = "prediction"){ | |
# adapted from | |
# https://stackoverflow.com/questions/38109501/how-does-predict-lm-compute-confidence-interval-and-prediction-interval | |
# model is an lm object from r | |
# data is the dataset to predict from | |
# robust_vcov must be a robust vcov matrix created by V <- sandwich::vcovHC(model, ...) | |
# level = the % of the confidence interval, default is 95% | |
# interval = either "prediction" or "confidence" - prediction includes uncertainty about the model itself | |
if(is.null(robust_vcov)){ | |
robust_vcov <- vcov(model) | |
} | |
if(is.null(data)){ | |
data <- model$model | |
} | |
fit <- as.numeric(model.matrix(model, data=data) %*% model$coefficients) | |
se2 <- unname(rowSums((model.matrix(model) %*% robust_vcov) * model.matrix(model))) | |
alpha <- qt((1-level)/2, df = model$df.residual) | |
if(interval == "confidence"){ | |
upr <- fit + alpha*sqrt(se2) | |
lwr <- fit - alpha*sqrt(se2) | |
} else if(interval == "prediction"){ | |
sigma2 <- sum(model$residuals ^ 2) / model$df.residual | |
upr <- fit + alpha*sqrt(se2+sigma2) | |
lwr <- fit - alpha*sqrt(se2+sigma2) | |
} | |
preds <- cbind(fit, lwr, upr) | |
return(list(fit = preds, se.fit = sqrt(se2))) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment