Last active
April 23, 2019 19:21
-
-
Save jkotra/a4a228351b94584789fd02109027fd60 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
EPOCHS = 30 | |
trn_loss = [] | |
val_loss = [] | |
for epoch in range(EPOCHS): | |
train_iter = mx.io.NDArrayIter(trn_x, trn_y, 1000, shuffle=True) | |
val_iter = mx.io.NDArrayIter(val_x, val_y, 1000, shuffle=True) | |
for trn_batch,val_batch in zip(train_iter,val_iter): | |
x = trn_batch.data[0].as_in_context(device) | |
y = trn_batch.label[0].as_in_context(device) | |
vx = trn_batch.data[0].as_in_context(device) | |
vy = trn_batch.label[0].as_in_context(device) | |
with autograd.record(): | |
y_pred = cnn(x) | |
loss = loss_function(y_pred, y) | |
accuracy_fn.update(y,y_pred) | |
ce_loss.update(y,F.softmax(y_pred)) | |
_,training_acc = accuracy_fn.get() | |
_,training_loss = ce_loss.get() | |
trn_loss.append(training_loss) | |
reset_metrics() | |
#backprop | |
loss.backward() | |
trainer.step(batch_size=trn_x.shape[0]) | |
#computing validation loss | |
y_pred = cnn(vx) | |
accuracy_fn.update(vy,y_pred) | |
ce_loss.update(vy,F.softmax(y_pred)) | |
_,validation_acc = accuracy_fn.get() | |
_,validation_loss = ce_loss.get() | |
val_loss.append(validation_loss) | |
reset_metrics() | |
print("epoch: {} | trn_loss: {} | trn_acc: {} | val_loss: {}".format( | |
epoch+1, | |
trn_loss[-1], | |
training_acc, | |
val_loss[-1])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment