Created
January 15, 2025 23:04
-
-
Save jkulhanek/aae3ec12d779ffc729c72157315df0da to your computer and use it in GitHub Desktop.
Rotate spherical harmonics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def rotation_matrix_to_quaternion(R): | |
"""Convert input 3x3 rotation matrix to unit quaternion. | |
Assuming an orthogonal 3x3 matrix ℛ rotates a vector v such that | |
v' = ℛ * v, | |
we can also express this rotation in terms of a unit quaternion R such that | |
v' = R * v * R⁻¹, | |
where v and v' are now considered pure-vector quaternions. This function | |
returns that quaternion. If `rot` is not orthogonal, the "closest" orthogonal | |
matrix is used; see Notes below. | |
Parameters | |
---------- | |
R : (...Nx3x3) float array | |
Each 3x3 matrix represents a rotation by multiplying (from the left) | |
a column vector to produce a rotated column vector. Note that this | |
input may actually have ndims>3; it is just assumed that the last | |
two dimensions have size 3, representing the matrix. | |
Returns | |
------- | |
q : array of quaternions | |
Unit quaternions resulting in rotations corresponding to input | |
rotations. Output shape is rot.shape[:-2]. | |
Raises | |
------ | |
LinAlgError | |
If any of the eigenvalue solutions does not converge | |
Notes | |
----- | |
This function uses Bar-Itzhack's algorithm to allow for | |
non-orthogonal matrices. [J. Guidance, Vol. 23, No. 6, p. 1085 | |
<http://dx.doi.org/10.2514/2.4654>] This will almost certainly be quite a bit | |
slower than simpler versions, though it will be more robust to numerical errors | |
in the rotation matrix. Also note that the Bar-Itzhack paper uses some pretty | |
weird conventions. The last component of the quaternion appears to represent | |
the scalar, and the quaternion itself is conjugated relative to the convention | |
used throughout the quaternionic module. | |
""" | |
from scipy import linalg | |
rot = np.array(R, copy=False) | |
shape = rot.shape[:-2] | |
K3 = np.empty(shape+(4, 4), dtype=rot.dtype) | |
K3[..., 0, 0] = (rot[..., 0, 0] - rot[..., 1, 1] - rot[..., 2, 2])/3 | |
K3[..., 0, 1] = (rot[..., 1, 0] + rot[..., 0, 1])/3 | |
K3[..., 0, 2] = (rot[..., 2, 0] + rot[..., 0, 2])/3 | |
K3[..., 0, 3] = (rot[..., 1, 2] - rot[..., 2, 1])/3 | |
K3[..., 1, 0] = K3[..., 0, 1] | |
K3[..., 1, 1] = (rot[..., 1, 1] - rot[..., 0, 0] - rot[..., 2, 2])/3 | |
K3[..., 1, 2] = (rot[..., 2, 1] + rot[..., 1, 2])/3 | |
K3[..., 1, 3] = (rot[..., 2, 0] - rot[..., 0, 2])/3 | |
K3[..., 2, 0] = K3[..., 0, 2] | |
K3[..., 2, 1] = K3[..., 1, 2] | |
K3[..., 2, 2] = (rot[..., 2, 2] - rot[..., 0, 0] - rot[..., 1, 1])/3 | |
K3[..., 2, 3] = (rot[..., 0, 1] - rot[..., 1, 0])/3 | |
K3[..., 3, 0] = K3[..., 0, 3] | |
K3[..., 3, 1] = K3[..., 1, 3] | |
K3[..., 3, 2] = K3[..., 2, 3] | |
K3[..., 3, 3] = (rot[..., 0, 0] + rot[..., 1, 1] + rot[..., 2, 2])/3 | |
if not shape: | |
q = np.empty((4,), dtype=rot.dtype) | |
eigvals, eigvecs = linalg.eigh(K3.T, subset_by_index=(3, 3)) | |
del eigvals | |
q[0] = eigvecs[-1].item() | |
q[1:] = -eigvecs[:-1].flatten() | |
return q | |
else: | |
q = np.empty(shape+(4,), dtype=rot.dtype) | |
for flat_index in range(reduce(mul, shape)): | |
multi_index = np.unravel_index(flat_index, shape) | |
eigvals, eigvecs = linalg.eigh(K3[multi_index], subset_by_index=(3, 3)) | |
del eigvals | |
q[multi_index+(0,)] = eigvecs[-1] | |
q[multi_index+(slice(1,None),)] = -eigvecs[:-1].flatten() | |
return q | |
def _wigner_D_matrix(R, ell_max: int): | |
""" | |
Build a Wigner matrix from a rotation matrix. | |
Args: | |
R: A 3x3 rotation matrix. | |
ell_max: The maximum ell value. | |
Returns: | |
The Wigner D matrix. | |
""" | |
""" | |
This code was taken from https://github.com/moble/spherica | |
It is hosted under the following license: | |
The MIT License (MIT) | |
Copyright (c) 2023 Mike Boyle | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
ell_min = 0 | |
mp_max=np.iinfo(np.int64).max | |
def _complex_powers(zravel, M, zpowers): | |
"""Helper function for complex_powers(z, M)""" | |
for i in range(zravel.size): | |
zpowers[i, 0] = 1.0 + 0.0j | |
if M > 0: | |
z = zravel[i] | |
θ = 1 | |
while z.real<0 or z.imag<0: | |
θ *= 1j | |
z /= 1j | |
zpowers[i, 1] = z | |
clock = θ | |
dc = -2 * np.sqrt(z).imag ** 2 | |
t = 2 * dc | |
dz = dc * (1 + 2 * zpowers[i, 1]) + 1j * np.sqrt(-dc * (2 + dc)) | |
for m in range(2, M+1): | |
zpowers[i, m] = zpowers[i, m-1] + dz | |
dz += t * zpowers[i, m] | |
zpowers[i, m-1] *= clock | |
clock *= θ | |
zpowers[i, M] *= clock | |
def WignerHsize(mp_max, ell_max=-2): | |
if ell_max == -2: | |
ell_max = mp_max | |
elif ell_max < 0: | |
return 0 | |
if mp_max is None or mp_max >= ell_max: | |
return (ell_max+1) * (ell_max+2) * (2*ell_max+3) // 6 | |
else: | |
return ((ell_max+1) * (ell_max+2) * (2*ell_max+3) - 2*(ell_max-mp_max)*(ell_max-mp_max+1)*(ell_max-mp_max+2)) // 6 | |
def WignerDsize(ell_min, mp_max, ell_max=-1): | |
if ell_max < 0: | |
ell_max = mp_max | |
if mp_max >= ell_max: | |
return ( | |
ell_max * (ell_max * (4 * ell_max + 12) + 11) | |
+ ell_min * (1 - 4 * ell_min**2) | |
+ 3 | |
) // 3 | |
if mp_max > ell_min: | |
return ( | |
3 * ell_max * (ell_max + 2) | |
+ ell_min * (1 - 4 * ell_min**2) | |
+ mp_max * ( | |
3 * ell_max * (2 * ell_max + 4) | |
+ mp_max * (-2 * mp_max - 3) + 5 | |
) | |
+ 3 | |
) // 3 | |
else: | |
return (ell_max * (ell_max + 2) - ell_min**2) * (1 + 2 * mp_max) + 2 * mp_max + 1 | |
def _WignerHindex(ell, mp, m, mp_max): | |
mp_max = min(mp_max, ell) | |
i = WignerHsize(mp_max, ell-1) # total size of everything with smaller ell | |
if mp<1: | |
i += (mp_max + mp) * (2*ell - mp_max + mp + 1) // 2 # size of wedge to the left of m' | |
else: | |
i += (mp_max + 1) * (2*ell - mp_max + 2) // 2 # size of entire left half of wedge | |
i += (mp - 1) * (2*ell - mp + 2) // 2 # size of right half of wedge to the left of m' | |
i += m - abs(mp) # size of column in wedge between m and |m'| | |
return i | |
def WignerHindex(ell, mp, m, mp_max=None): | |
if ell == 0: | |
return 0 | |
mpmax = ell | |
if mp_max is not None: | |
mpmax = min(mp_max, mpmax) | |
if m < -mp: | |
if m < mp: | |
return _WignerHindex(ell, -mp, -m, mpmax) | |
else: | |
return _WignerHindex(ell, -m, -mp, mpmax) | |
elif m < mp: | |
return _WignerHindex(ell, m, mp, mpmax) | |
else: | |
return _WignerHindex(ell, mp, m, mpmax) | |
def WignerDindex(ell, mp, m, ell_min=0, mp_max=-1): | |
if mp_max < 0: | |
mp_max = ell | |
i = (mp + min(mp_max, ell)) * (2 * ell + 1) + m + ell | |
if ell > ell_min: | |
i += WignerDsize(ell_min, mp_max, ell-1) | |
return i | |
def nm_index(n, m): | |
return m + n * (n + 1) | |
def nabsm_index(n, absm): | |
return absm + (n * (n + 1)) // 2 | |
def _step_1(Hwedge): | |
"""If n=0 set H_{0}^{0,0}=1.""" | |
Hwedge[0] = 1.0 | |
def _step_2(g, h, n_max, mp_max, Hwedge, Hextra, Hv, expiβ): | |
"""Compute values H^{0,m}_{n}(β)for m=0,...,n and H^{0,m}_{n+1}(β) for m=0,...,n+1 using Eq. (32): | |
H^{0,m}_{n}(β) = (-1)^m √((n-|m|)! / (n+|m|)!) P^{|m|}_{n}(cos β) | |
= (-1)^m (sin β)^m P̂^{|m|}_{n}(cos β) / √(k (2n+1)) | |
This function computes the associated Legendre functions directly by recursion | |
as explained by Holmes and Featherstone (2002), doi:10.1007/s00190-002-0216-2. | |
Note that I had to adjust certain steps for consistency with the notation | |
assumed by arxiv:1403.7698 -- mostly involving factors of (-1)**m. | |
NOTE: Though not specified in arxiv:1403.7698, there is not enough information | |
for step 4 unless we also use symmetry to set H^{1,0}_{n} here. Similarly, | |
step 5 needs additional information, which depends on setting H^{0, -1}_{n} | |
from its symmetric equivalent H^{0, 1}_{n} in this step. | |
""" | |
cosβ = expiβ.real | |
sinβ = expiβ.imag | |
if n_max > 0: | |
# n = 1 | |
n0n_index = WignerHindex(1, 0, 1, mp_max) | |
nn_index = nm_index(1, 1) | |
Hwedge[n0n_index] = np.sqrt(3) # Un-normalized | |
Hwedge[n0n_index-1] = (g[nn_index-1] * cosβ) * 1.0 / np.sqrt(2) # Normalized | |
# n = 2, ..., n_max+1 | |
for n in range(2, n_max+2): | |
if n <= n_max: | |
n0n_index = WignerHindex(n, 0, n, mp_max) | |
H = Hwedge | |
else: | |
n0n_index = n | |
H = Hextra | |
nm10nm1_index = WignerHindex(n-1, 0, n-1, mp_max) | |
nn_index = nm_index(n, n) | |
const = np.sqrt(1.0 + 0.5/n) | |
gi = g[nn_index-1] | |
# m = n | |
H[n0n_index] = const * Hwedge[nm10nm1_index] | |
# m = n-1 | |
H[n0n_index-1] = gi * cosβ * H[n0n_index] | |
# m = n-2, ..., 1 | |
for i in range(2, n): | |
gi = g[nn_index-i] | |
hi = h[nn_index-i] | |
H[n0n_index-i] = gi * cosβ * H[n0n_index-i+1] - hi * sinβ**2 * H[n0n_index-i+2] | |
# m = 0, with normalization | |
const = 1.0 / np.sqrt(4*n+2) | |
gi = g[nn_index-n] | |
hi = h[nn_index-n] | |
H[n0n_index-n] = (gi * cosβ * H[n0n_index-n+1] - hi * sinβ**2 * H[n0n_index-n+2]) * const | |
# Now, loop back through, correcting the normalization for this row, except for n=n element | |
prefactor = const | |
for i in range(1, n): | |
prefactor *= sinβ | |
H[n0n_index-n+i] *= prefactor | |
# Supply extra edge cases as noted in docstring | |
if n <= n_max: | |
Hv[nm_index(n, 1)] = Hwedge[WignerHindex(n, 0, 1, mp_max)] | |
Hv[nm_index(n, 0)] = Hwedge[WignerHindex(n, 0, 1, mp_max)] | |
# Correct normalization of m=n elements | |
prefactor = 1.0 | |
for n in range(1, n_max+1): | |
prefactor *= sinβ | |
Hwedge[WignerHindex(n, 0, n, mp_max)] *= prefactor / np.sqrt(4*n+2) | |
for n in [n_max+1]: | |
prefactor *= sinβ | |
Hextra[n] *= prefactor / np.sqrt(4*n+2) | |
# Supply extra edge cases as noted in docstring | |
Hv[nm_index(1, 1)] = Hwedge[WignerHindex(1, 0, 1, mp_max)] | |
Hv[nm_index(1, 0)] = Hwedge[WignerHindex(1, 0, 1, mp_max)] | |
def _step_3(a, b, n_max, mp_max, Hwedge, Hextra, expiβ): | |
"""Use relation (41) to compute H^{1,m}_{n}(β) for m=1,...,n. Using symmetry and shift | |
of the indices this relation can be written as | |
b^{0}_{n+1} H^{1, m}_{n} = (b^{−m−1}_{n+1} (1−cosβ))/2 H^{0, m+1}_{n+1} | |
− (b^{ m−1}_{n+1} (1+cosβ))/2 H^{0, m−1}_{n+1} | |
− a^{m}_{n} sinβ H^{0, m}_{n+1} | |
""" | |
cosβ = expiβ.real | |
sinβ = expiβ.imag | |
if n_max > 0 and mp_max > 0: | |
for n in range(1, n_max+1): | |
# m = 1, ..., n | |
i1 = WignerHindex(n, 1, 1, mp_max) | |
if n+1 <= n_max: | |
i2 = WignerHindex(n+1, 0, 0, mp_max) | |
H2 = Hwedge | |
else: | |
i2 = 0 | |
H2 = Hextra | |
i3 = nm_index(n+1, 0) | |
i4 = nabsm_index(n, 1) | |
inverse_b5 = 1.0 / b[i3] | |
for i in range(n): | |
b6 = b[-i+i3-2] | |
b7 = b[i+i3] | |
a8 = a[i+i4] | |
Hwedge[i+i1] = inverse_b5 * ( | |
0.5 * ( | |
b6 * (1-cosβ) * H2[i+i2+2] | |
- b7 * (1+cosβ) * H2[i+i2] | |
) | |
- a8 * sinβ * H2[i+i2+1] | |
) | |
def _step_4(d, n_max, mp_max, Hwedge, Hv): | |
"""Recursively compute H^{m'+1, m}_{n}(β) for m'=1,...,n−1, m=m',...,n using relation (50) resolved | |
with respect to H^{m'+1, m}_{n}: | |
d^{m'}_{n} H^{m'+1, m}_{n} = d^{m'−1}_{n} H^{m'−1, m}_{n} | |
− d^{m−1}_{n} H^{m', m−1}_{n} | |
+ d^{m}_{n} H^{m', m+1}_{n} | |
(where the last term drops out for m=n). | |
""" | |
if n_max > 0 and mp_max > 0: | |
for n in range(2, n_max+1): | |
for mp in range(1, min(n, mp_max)): | |
# m = m', ..., n-1 | |
# i1 = WignerHindex(n, mp+1, mp, mp_max) | |
i1 = WignerHindex(n, mp+1, mp+1, mp_max) - 1 | |
i2 = WignerHindex(n, mp-1, mp, mp_max) | |
# i3 = WignerHindex(n, mp, mp-1, mp_max) | |
i3 = WignerHindex(n, mp, mp, mp_max) - 1 | |
i4 = WignerHindex(n, mp, mp+1, mp_max) | |
i5 = nm_index(n, mp) | |
i6 = nm_index(n, mp-1) | |
inverse_d5 = 1.0 / d[i5] | |
d6 = d[i6] | |
for i in [0]: | |
d7 = d[i+i6] | |
d8 = d[i+i5] | |
Hv[i+nm_index(n, mp+1)] = inverse_d5 * ( | |
d6 * Hwedge[i+i2] | |
- d7 * Hv[i+nm_index(n, mp)] | |
+ d8 * Hwedge[i+i4] | |
) | |
for i in range(1, n-mp): | |
d7 = d[i+i6] | |
d8 = d[i+i5] | |
Hwedge[i+i1] = inverse_d5 * ( | |
d6 * Hwedge[i+i2] | |
- d7 * Hwedge[i+i3] | |
+ d8 * Hwedge[i+i4] | |
) | |
# m = n | |
for i in [n-mp]: | |
Hwedge[i+i1] = inverse_d5 * ( | |
d6 * Hwedge[i+i2] | |
- d[i+i6] * Hwedge[i+i3] | |
) | |
def _step_5(d, n_max, mp_max, Hwedge, Hv): | |
"""Recursively compute H^{m'−1, m}_{n}(β) for m'=−1,...,−n+1, m=−m',...,n using relation (50) | |
resolved with respect to H^{m'−1, m}_{n}: | |
d^{m'−1}_{n} H^{m'−1, m}_{n} = d^{m'}_{n} H^{m'+1, m}_{n} | |
+ d^{m−1}_{n} H^{m', m−1}_{n} | |
− d^{m}_{n} H^{m', m+1}_{n} | |
(where the last term drops out for m=n). | |
NOTE: Although arxiv:1403.7698 specifies the loop over mp to start at -1, I | |
find it necessary to start at 0, or there will be missing information. This | |
also requires setting the (m',m)=(0,-1) components before beginning this loop. | |
""" | |
if n_max > 0 and mp_max > 0: | |
for n in range(0, n_max+1): | |
for mp in range(0, -min(n, mp_max), -1): | |
# m = -m', ..., n-1 | |
# i1 = WignerHindex(n, mp-1, -mp, mp_max) | |
i1 = WignerHindex(n, mp-1, -mp+1, mp_max) - 1 | |
# i2 = WignerHindex(n, mp+1, -mp, mp_max) | |
i2 = WignerHindex(n, mp+1, -mp+1, mp_max) - 1 | |
# i3 = WignerHindex(n, mp, -mp-1, mp_max) | |
i3 = WignerHindex(n, mp, -mp, mp_max) - 1 | |
i4 = WignerHindex(n, mp, -mp+1, mp_max) | |
i5 = nm_index(n, mp-1) | |
i6 = nm_index(n, mp) | |
i7 = nm_index(n, -mp-1) | |
i8 = nm_index(n, -mp) | |
inverse_d5 = 1.0 / d[i5] | |
d6 = d[i6] | |
for i in [0]: | |
d7 = d[i+i7] | |
d8 = d[i+i8] | |
if mp == 0: | |
Hv[i+nm_index(n, mp-1)] = inverse_d5 * ( | |
d6 * Hv[i+nm_index(n, mp+1)] | |
+ d7 * Hv[i+nm_index(n, mp)] | |
- d8 * Hwedge[i+i4] | |
) | |
else: | |
Hv[i+nm_index(n, mp-1)] = inverse_d5 * ( | |
d6 * Hwedge[i+i2] | |
+ d7 * Hv[i+nm_index(n, mp)] | |
- d8 * Hwedge[i+i4] | |
) | |
for i in range(1, n+mp): | |
d7 = d[i+i7] | |
d8 = d[i+i8] | |
Hwedge[i+i1] = inverse_d5 * ( | |
d6 * Hwedge[i+i2] | |
+ d7 * Hwedge[i+i3] | |
- d8 * Hwedge[i+i4] | |
) | |
# m = n | |
i = n+mp | |
Hwedge[i+i1] = inverse_d5 * ( | |
d6 * Hwedge[i+i2] | |
+ d[i+i7] * Hwedge[i+i3] | |
) | |
def ϵ(m): | |
if m <= 0: | |
return 1 | |
elif m%2: | |
return -1 | |
else: | |
return 1 | |
def _fill_wigner_D(ell_min, ell_max, mp_max, 𝔇, Hwedge, zₐpowers, zᵧpowers): | |
"""Helper function for Wigner.D""" | |
# 𝔇ˡₘₚ,ₘ(R) = dˡₘₚ,ₘ(R) exp[iϕₐ(m-mp)+iϕₛ(m+mp)] = dˡₘₚ,ₘ(R) exp[i(ϕₛ+ϕₐ)m+i(ϕₛ-ϕₐ)mp] | |
# exp[iϕₛ] = R̂ₛ = hat(R[0] + 1j * R[3]) = zp | |
# exp[iϕₐ] = R̂ₐ = hat(R[2] + 1j * R[1]) = zm.conjugate() | |
# exp[i(ϕₛ+ϕₐ)] = zp * zm.conjugate() = z[2] = zᵧ | |
# exp[i(ϕₛ-ϕₐ)] = zp * zm = z[0] = zₐ | |
for ell in range(ell_min, ell_max+1): | |
for mp in range(-ell, 0): | |
i_D = WignerDindex(ell, mp, -ell, ell_min) | |
for m in range(-ell, 0): | |
i_H = WignerHindex(ell, mp, m, mp_max) | |
𝔇[i_D] = ϵ(mp) * ϵ(-m) * Hwedge[i_H] * zᵧpowers[-m].conjugate() * zₐpowers[-mp].conjugate() | |
i_D += 1 | |
for m in range(0, ell+1): | |
i_H = WignerHindex(ell, mp, m, mp_max) | |
𝔇[i_D] = ϵ(mp) * ϵ(-m) * Hwedge[i_H] * zᵧpowers[m] * zₐpowers[-mp].conjugate() | |
i_D += 1 | |
for mp in range(0, ell+1): | |
i_D = WignerDindex(ell, mp, -ell, ell_min) | |
for m in range(-ell, 0): | |
i_H = WignerHindex(ell, mp, m, mp_max) | |
𝔇[i_D] = ϵ(mp) * ϵ(-m) * Hwedge[i_H] * zᵧpowers[-m].conjugate() * zₐpowers[mp] | |
i_D += 1 | |
for m in range(0, ell+1): | |
i_H = WignerHindex(ell, mp, m, mp_max) | |
𝔇[i_D] = ϵ(mp) * ϵ(-m) * Hwedge[i_H] * zᵧpowers[m] * zₐpowers[mp] | |
i_D += 1 | |
def _to_euler_phases(R, z): | |
"""Helper function for `to_euler_phases`""" | |
a = R[0]**2 + R[3]**2 | |
b = R[1]**2 + R[2]**2 | |
sqrta = np.sqrt(a) | |
sqrtb = np.sqrt(b) | |
z[1] = ((a - b) + 2j * sqrta * sqrtb) / (a + b) # exp[iβ] | |
if sqrta > 0.0: | |
zp = (R[0] + 1j * R[3]) / sqrta # exp[i(α+γ)/2] | |
else: | |
zp = 1.0 + 0.0j | |
if abs(sqrtb) > 0.0: | |
zm = (R[2] - 1j * R[1]) / sqrtb # exp[i(α-γ)/2] | |
else: | |
zm = 1.0 +0.0j | |
z[0] = zp * zm | |
z[2] = zp * zm.conjugate() | |
# quaternions = quaternionic.array(R).ndarray.reshape((-1, 4)) | |
quaternions = rotation_matrix_to_quaternion( | |
np.swapaxes(R, -1, -2) | |
).reshape((-1, 4)) | |
Dsize = WignerDsize(ell_min, mp_max, ell_max) | |
Hsize = WignerHsize(mp_max, ell_max) | |
function_values = np.zeros(quaternions.shape[:-1] + (Dsize,), dtype=complex) | |
n = np.array([n for n in range(ell_max+2) for _ in range(-n, n+1)]) | |
m = np.array([m for n in range(ell_max+2) for m in range(-n, n+1)]) | |
absn = np.array([n for n in range(ell_max+2) for _ in range(n+1)]) | |
absm = np.array([m for n in range(ell_max+2) for m in range(n+1)]) | |
_a = np.sqrt((absn+1+absm) * (absn+1-absm) / ((2*absn+1)*(2*absn+3))) | |
_b = np.sqrt((n-m-1) * (n-m) / ((2*n-1)*(2*n+1))) | |
_b[m<0] *= -1 | |
_d = 0.5 * np.sqrt((n-m) * (n+m+1)) | |
_d[m<0] *= -1 | |
with np.errstate(divide='ignore', invalid='ignore'): | |
_g = 2*(m+1) / np.sqrt((n-m)*(n+m+1)) | |
_h = np.sqrt((n+m+2)*(n-m-1) / ((n-m)*(n+m+1))) | |
if not ( | |
np.all(np.isfinite(_a)) and | |
np.all(np.isfinite(_b)) and | |
np.all(np.isfinite(_d)) | |
): | |
raise ValueError("Found a non-finite value inside this object") | |
# Loop over all input quaternions | |
for i_R in range(quaternions.shape[0]): | |
# Init | |
Hwedge = np.zeros((Hsize,), dtype=float) | |
Hv = np.zeros(((ell_max+1)**2,), dtype=float) | |
Hextra = np.zeros((ell_max+2,), dtype=float) | |
zₐpowers = np.zeros((ell_max+1), dtype=complex)[np.newaxis] | |
zᵧpowers = np.zeros((ell_max+1), dtype=complex)[np.newaxis] | |
z = np.zeros((3,), dtype=complex) | |
_to_euler_phases(quaternions[i_R], z) | |
# Compute a quarter of the H matrix | |
_step_1(Hwedge) | |
_step_2(_g, _h, ell_max, mp_max, Hwedge, Hextra, Hv, z[1]) | |
_step_3(_a, _b, ell_max, mp_max, Hwedge, Hextra, z[1]) | |
_step_4(_d, ell_max, mp_max, Hwedge, Hv) | |
_step_5(_d, ell_max, mp_max, Hwedge, Hv) | |
D = function_values[i_R] | |
_complex_powers(z[0:1], ell_max, zₐpowers) | |
_complex_powers(z[2:3], ell_max, zᵧpowers) | |
_fill_wigner_D(ell_min, ell_max, mp_max, D, Hwedge, zₐpowers[0], zᵧpowers[0]) | |
return function_values.reshape(R.shape[:-2] + (Dsize,)) | |
def _winger_D_multiply_spherical_harmonics(D, y): | |
""" | |
Multiply a Wigner D matrix by a spherical harmonic coefficients. | |
""" | |
output = np.zeros_like(y) | |
offset, ls, i = 0, 0, 0 | |
for i in range(int(math.sqrt(y.shape[-1]))): | |
ls = 2*i+1 | |
offset = ((2*i-1)*i*(4*i+2))//6 | |
d_part = D[..., offset:offset+ls**2].reshape(D.shape[:-1] + (ls, ls)).T | |
offset_sh = i**2 | |
y_part = y[..., offset_sh:offset_sh+ls] | |
output[..., offset_sh:offset_sh+ls] = np.matmul(d_part, y_part[..., None])[..., 0].real | |
if (offset+ls**2) != D.shape[-1]: | |
raise ValueError(f"The D matrix shape {D.shape[-1]} does not match the expected shape {offset} for the spherical harmonics with rank {i-1}") | |
return output | |
def rotate_spherical_harmonics(R, y): | |
""" | |
Rotate spherical harmonics coefficients by a rotation matrix R. | |
Args: | |
R: A 3x3 rotation matrix. | |
y: The spherical harmonics coefficients. | |
Returns: | |
The rotated spherical harmonics coefficients. | |
""" | |
D = _wigner_D_matrix(R, int(math.sqrt(y.shape[-1]))-1) | |
return _winger_D_multiply_spherical_harmonics(D, y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
"This code was taken from" I believe the working link is https://github.com/moble/spherical