RPI - 2024
Framework: https://app.myeducator.com/reader/web/1421a/2/qk5s5/
Resources: https://colab.research.google.com
RPI - 2024
Framework: https://app.myeducator.com/reader/web/1421a/2/qk5s5/
Resources: https://colab.research.google.com
def generate_lag(dframe, by, target, periods):
#print("Generating laged values for", target)
for num in range(1, periods+1):
dframe[target+'_lag'+str(num)]=dframe.groupby(by)[target].shift(num)
dframe[target+'_lag'+str(num)].fillna(0, inplace=True)
return dframe
# This will loop through a set of data files, creating samples of each file. | |
import os, sys, importlib, glob | |
import numpy as np | |
from pathlib import Path | |
import pandas as pd | |
sys.path.append(os.path.join(Path.cwd().parent, 'modules')) | |
import mongoparser as mp | |
importlib.reload(mp) |
It is important for you to spend time understanding the mistakes from the homework.
For the midterm, please add the following code to a cell to run and debug any errors:
import os
files = "https://www.dropbox.com/s/fa7sp3r1enbk8xy/midterm.zip"
!pip install git+https://github.com/data-8/Gofer-Grader && wget $files && unzip -o midterm.zip
from client.api.notebook import Notebook
Topic | Link |
---|---|
Revisiting Titanic with Ludwig | |
Revisiting Titanic with FastAI | |
FastAI - Pets | |
AutoML with TPOT | [ |