Skip to content

Instantly share code, notes, and snippets.

@jl2
Created March 27, 2011 18:13
Show Gist options
  • Save jl2/889430 to your computer and use it in GitHub Desktop.
Save jl2/889430 to your computer and use it in GitHub Desktop.
Simple thread pool in C++.
#include <stdio.h>
#include <queue>
#include <unistd.h>
#include <pthread.h>
#include <stdlib.h>
// Base task for Tasks
// run() should be overloaded and expensive calculations done there
// showTask() is for debugging and can be deleted if not used
class Task {
public:
Task() {}
virtual ~Task() {}
virtual void run()=0;
virtual void showTask()=0;
};
// Wrapper around std::queue with some mutex protection
class WorkQueue {
public:
WorkQueue() {
// Initialize the mutex protecting the queue
pthread_mutex_init(&qmtx,0);
// wcond is a condition variable that's signaled
// when new work arrives
pthread_cond_init(&wcond, 0);
}
~WorkQueue() {
// Cleanup pthreads
pthread_mutex_destroy(&qmtx);
pthread_cond_destroy(&wcond);
}
// Retrieves the next task from the queue
Task *nextTask() {
// The return value
Task *nt = 0;
// Lock the queue mutex
pthread_mutex_lock(&qmtx);
// Check if there's work
if (finished && tasks.size() == 0) {
// If not return null (0)
nt = 0;
} else {
// Not finished, but there are no tasks, so wait for
// wcond to be signalled
if (tasks.size()==0) {
pthread_cond_wait(&wcond, &qmtx);
}
// get the next task
nt = tasks.front();
tasks.pop();
// For debugging
if (nt) nt->showTask();
}
// Unlock the mutex and return
pthread_mutex_unlock(&qmtx);
return nt;
}
// Add a task
void addTask(Task *nt) {
// Only add the task if the queue isn't marked finished
if (!finished) {
// Lock the queue
pthread_mutex_lock(&qmtx);
// Add the task
tasks.push(nt);
// signal there's new work
pthread_cond_signal(&wcond);
// Unlock the mutex
pthread_mutex_unlock(&qmtx);
}
}
// Mark the queue finished
void finish() {
pthread_mutex_lock(&qmtx);
finished = true;
// Signal the condition variable in case any threads are waiting
pthread_cond_signal(&wcond);
pthread_mutex_unlock(&qmtx);
}
// Check if there's work
bool hasWork() {
return (tasks.size()>0);
}
private:
std::queue<Task*> tasks;
bool finished;
pthread_mutex_t qmtx;
pthread_cond_t wcond;
};
// Function that retrieves a task from a queue, runs it and deletes it
static void *getWork(void* param) {
Task *mw = 0;
WorkQueue *wq = (WorkQueue*)param;
while (mw = wq->nextTask()) {
mw->run();
delete mw;
}
return 0;
}
class ThreadPool {
public:
// Allocate a thread pool and set them to work trying to get tasks
ThreadPool(int n) : _numThreads(n) {
printf("Creating a thread pool with %d threads\n", n);
threads = new pthread_t[n];
for (int i=0; i< n; ++i) {
pthread_create(&(threads[i]), 0, getWork, &workQueue);
}
}
// Wait for the threads to finish, then delete them
~ThreadPool() {
workQueue.finish();
waitForCompletion();
for (int i=0; i<_numThreads; ++i) {
pthread_join(threads[i], 0);
}
delete [] threads;
}
// Add a task
void addTask(Task *nt) {
workQueue.addTask(nt);
}
// Tell the tasks to finish and return
void finish() {
workQueue.finish();
}
// Checks if there is work to do
bool hasWork() {
return workQueue.hasWork();
}
// Super inefficient way to wait for all tasks to finish
void waitForCompletion() {
while (workQueue.hasWork()) {}
}
private:
pthread_t *threads;
int _numThreads;
WorkQueue workQueue;
};
// stdout is a shared resource, so protected it with a mutex
static pthread_mutex_t console_mutex = PTHREAD_MUTEX_INITIALIZER;
// Debugging function
void showTask(int n) {
pthread_mutex_lock(&console_mutex);
printf("Adding fib(%d)\n", n);
pthread_mutex_unlock(&console_mutex);
}
// Task to compute fibonacci numbers
// It's more efficient to use an iterative algorithm, but
// the recursive algorithm takes longer and is more interesting
// than sleeping for X seconds to show parrallelism
class FibTask : public Task {
public:
FibTask(int n) : Task(), _n(n) {}
~FibTask() {
// Debug prints
pthread_mutex_lock(&console_mutex);
printf("tid(%d) - fibd(%d) being deleted\n", pthread_self(), _n);
pthread_mutex_unlock(&console_mutex);
}
virtual void run() {
// Note: it's important that this isn't contained in the console mutex lock
long long val = innerFib(_n);
// Show results
pthread_mutex_lock(&console_mutex);
printf("Fibd %d = %lld\n",_n, val);
pthread_mutex_unlock(&console_mutex);
// The following won't work in parrallel:
// pthread_mutex_lock(&console_mutex);
// printf("Fibd %d = %lld\n",_n, innerFib(_n));
// pthread_mutex_unlock(&console_mutex);
}
virtual void showTask() {
// More debug printing
pthread_mutex_lock(&console_mutex);
printf("thread %d computing fibonacci %d\n", pthread_self(), _n);
pthread_mutex_unlock(&console_mutex);
}
private:
// Slow computation of fibonacci sequence
// To make things interesting, and perhaps imporove load balancing, these
// inner computations could be added to the task queue
// Ideally set a lower limit on when that's done
// (i.e. don't create a task for fib(2)) because thread overhead makes it
// not worth it
long long innerFib(long long n) {
if (n<=1) { return 1; }
return innerFib(n-1) + innerFib(n-2);
}
long long _n;
};
int main(int argc, char *argv[]) {
// Create a thread pool
ThreadPool *tp = new ThreadPool(12);
// Create work for it
for (int i=0;i<100; ++i) {
int rv = rand() % 50 + 1;
showTask(rv);
tp->addTask(new FibTask(rv));
}
// Finish up
tp->finish();
// Delete it
delete tp;
printf("Done with all work!\n");
}
@samair
Copy link

samair commented Jul 31, 2018

I see a problem, how do all threads come out if they happen to finish all tasks and are on condition wait. I guess cond_broadcast is required.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment