Created
January 12, 2016 13:13
-
-
Save jlehtoma/598bba94b43a3b7a6c6e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Originally from http://rfunctions.blogspot.fi/2015/03/bivariate-maps-bivariatemap-function.html | |
# Install: | |
#install.packages("classInt") | |
#install.packages("raster") | |
#install.packages("rgdal") | |
#install.packages("dismo") | |
#install.packages("XML") | |
#install.packages("maps") | |
#install.packages("sp") | |
# Load: | |
library(classInt) | |
library(dismo) | |
library(maps) | |
library(raster) | |
library(rgdal) | |
library(sp) | |
library(XML) | |
colmat <- function(nquantiles = 10, | |
upperleft = rgb(0,150,235, maxColorValue = 255), | |
upperright = rgb(130,0,80, maxColorValue = 255), | |
bottomleft = "grey", | |
bottomright = rgb(255,230,15, maxColorValue = 255), | |
xlab = "x label", ylab = "y label") { | |
my.data <- seq(0,1,.01) | |
my.class <- classIntervals(my.data, n = nquantiles, style = "quantile") | |
my.pal.1 <- findColours(my.class, c(upperleft, bottomleft)) | |
my.pal.2 <- findColours(my.class, c(upperright, bottomright)) | |
col.matrix <- matrix(nrow = 101, ncol = 101, NA) | |
for (i in 1:101) { | |
my.col <- c(paste(my.pal.1[i]), paste(my.pal.2[i])) | |
col.matrix[102 - i,] <- findColours(my.class, my.col) | |
} | |
plot(c(1, 1), pch = 19, col = my.pal.1, cex = 0.5, xli = c(0,1), | |
ylim = c(0,1), frame.plot = FALSE, xlab = xlab, ylab = ylab, | |
cex.lab = 1.3) | |
for (i in 1:101) { | |
col.temp <- col.matrix[i - 1,] | |
points(my.data, rep((i - 1) / 100, 101), pch = 15, col = col.temp, cex = 1)} | |
seqs <- seq(0, 100, (100 / nquantiles)) | |
seqs[1] <- 1 | |
col.matrix <- col.matrix[c(seqs), c(seqs)] | |
} | |
# You can specify the number of quantiles, colors and labels of your color | |
# matrix. Example | |
col.matrix <- colmat(nquantiles = 10, upperleft = "blue", upperright = "yellow", | |
bottomleft = "green", bottomright = "red", | |
xlab = "My x label", ylab = "My y label") | |
# But let's use this simple code. You can change "nquantiles" to generate color | |
# matrices with different color schemes. For example, change it to 4 to produce | |
# a 4x4 color scheme. | |
col.matrix <- colmat(nquantiles = 10) | |
# Plot bivariate map | |
bivariate.map <- function(rasterx, rastery, colormatrix = col.matrix, | |
nquantiles = 10) { | |
quanmean <- getValues(rasterx) | |
temp <- data.frame(quanmean, quantile = rep(NA, length(quanmean))) | |
brks <- with(temp, quantile(temp, na.rm = TRUE, | |
probs = c(seq(0, 1, 1 / nquantiles)))) | |
r1 <- within(temp, quantile <- cut(quanmean, breaks = brks, | |
labels = 2:length(brks), | |
include.lowest = TRUE)) | |
quantr <- data.frame(r1[,2]) | |
quanvar <- getValues(rastery) | |
temp <- data.frame(quanvar, quantile = rep(NA, length(quanvar))) | |
brks <- with(temp, quantile(temp,na.rm = TRUE, | |
probs = c(seq(0, 1, 1 / nquantiles)))) | |
r2 <- within(temp, quantile <- cut(quanvar, breaks = brks, | |
labels = 2:length(brks), | |
include.lowest = TRUE)) | |
quantr2 <- data.frame(r2[, 2]) | |
as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} | |
col.matrix2 <- colormatrix | |
cn <- unique(colormatrix) | |
for (i in 1:length(col.matrix2)) { | |
ifelse(is.na(col.matrix2[i]), | |
col.matrix2[i] <- 1, | |
col.matrix2[i] <- which(col.matrix2[i] == cn)[1]) | |
} | |
cols <- numeric(length(quantr[, 1])) | |
for (i in 1:length(quantr[, 1])) { | |
a <- as.numeric.factor(quantr[i, 1]) | |
b <- as.numeric.factor(quantr2[i, 1]) | |
cols[i] <- as.numeric(col.matrix2[b, a]) | |
} | |
r <- rasterx | |
r[1:length(r)] <- cols | |
return(r) | |
} | |
# Get the data | |
dir.create("data") | |
download.file("http://download1324.mediafire.com/uo8sq368sb7g/4dpxqa38vue7ne6/rasters.zip", | |
"data/rasters.zip") | |
unzip("data/rasters.zip", exdir = "data") | |
# Load the first raster ("amphibians.grd"): | |
raster.amphibians <- raster("data/amphibians.grd") | |
# Load the second raster ("reptiles.grd") | |
raster.reptiles <- raster("data/reptiles.grd") | |
# Plot the first raster. You can see that most amphibians are in northwest | |
# (Amazon =]) and southeast (Atlantic forest =]) Brazil. | |
my.colors = colorRampPalette(c("white", "lightblue", "yellow", "orangered", | |
"red")) | |
plot(raster.amphibians, frame.plot = FALSE, axes = FALSE, box = FALSE, | |
add = FALSE, legend.width = 1, legend.shrink = 1, col = my.colors(255)) | |
map(interior = TRUE, add = TRUE) | |
# Plot the second raster. You can see that most reptiles are in northwest | |
# (Amazon) Brazil. | |
plot(raster.reptiles, frame.plot = FALSE, axes = FALSE, box = FALSE, | |
add = FALSE, legend.width = 1, legend.shrink = 1, col = my.colors(255)) | |
map(interior = TRUE, add = TRUE) | |
# Use the bivariate.map function: | |
bivmap <- bivariate.map(raster.amphibians, raster.reptiles, | |
colormatrix = col.matrix, nquantiles = 10) | |
# Plot the bivariate map: | |
p1 <- plot(bivmap, frame.plot = FALSE, axes = FALSE, box = FALSE, add = FALSE, | |
legend = FALSE, col = as.vector(col.matrix)) | |
m <- map(interior = TRUE, add = TRUE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment