Last active
July 11, 2020 00:40
-
-
Save jmclawson/9d015dec0934fbf1f2f4a20c8c7aef17 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
remotes::install_github("kjhealy/covdata") | |
library(covdata) | |
library(dplyr) | |
library(ggplot2) | |
library(ggrepel) | |
library(tidyr) | |
covus_wide <- covus %>% | |
select(date, state, measure, count) %>% | |
pivot_wider(id_cols = c(date, state), | |
names_from = measure, | |
values_from = count) | |
##### define df_covus ##### | |
excluding <- c("MP","VI", "AS", "GU") | |
data("uspop") | |
uspop$state_abbr[uspop$state == "District of Columbia"] <- "DC" | |
df_covus <- covus_wide %>% | |
filter(!state %in% excluding) %>% | |
left_join(y = uspop %>% | |
filter(sex == "Both Sexes", | |
hisp_label == "Total") %>% | |
select(state_abbr, pop) %>% | |
# add missing PR population | |
rbind(data.frame(state_abbr = "PR", | |
pop=3193694)), # census.gov | |
by = c("state" = "state_abbr")) %>% | |
group_by(state) %>% | |
mutate(daily_cases = positive - lead(positive)) %>% | |
mutate(daily_cases_capita = daily_cases / pop) | |
library(zoo) | |
library(statebins) | |
library(gganimate) | |
df_covus2 <- df_covus %>% | |
select(date, state, daily_cases_capita) %>% | |
group_by(state) %>% | |
mutate(weekly_avg_percapita = | |
rollapply(daily_cases_capita, | |
7, mean, align = "left", fill = NA), | |
weekly_avg_permille = weekly_avg_percapita * 1000) | |
df_covus3 <- df_covus2 | |
df_covus3$month <- format(df_covus3$date,"%B") | |
df_covus3 <- df_covus3 %>% | |
group_by(state, month) %>% | |
summarise(monthly_avg_permille = | |
mean(weekly_avg_permille, | |
na.rm = TRUE)) | |
# add missing rows | |
missing_df <- | |
data.frame(state = df_covus3$state %>% | |
unique(), | |
month = c(rep("January", 52), | |
rep("February", 52)), | |
monthly_avg_permille = 0) %>% | |
filter(!state == "WA") | |
df_covus3 <- rbind(df_covus3, missing_df) | |
df_covus3$month <- df_covus3$month %>% | |
factor(levels = c("January","February", | |
"March","April", | |
"May","June", | |
"July")) | |
plot <- df_covus3 %>% | |
ggplot(aes(state = state, | |
fill = monthly_avg_permille)) + | |
geom_statebins(na.rm = FALSE) + | |
coord_equal() + | |
scale_fill_viridis_c(option = "magma") + | |
theme_void() + | |
theme(legend.title = element_blank(), | |
legend.position = c(0.12, 0.8), | |
legend.justification = c(0, 0), | |
legend.direction = "horizontal") + | |
transition_states(month, | |
transition_length = 10, | |
state_length = 2, | |
wrap = FALSE) + | |
labs(title = '{closest_state}, 2020', | |
subtitle = "average daily new COVID-19 cases per thousand residents", | |
caption = "gist.github.com/jmclawson") + | |
theme(plot.title = element_text(hjust = 0.5, | |
size=14, | |
face="bold"), | |
plot.subtitle = element_text(hjust = 0.5)) | |
animate(plot, start_pause = 5, end_pause = 5) | |
anim_save("COVID-19_by_month.gif") | |
##### Louisiana Specific, by Parish ##### | |
covid_la <- nytcovcounty %>% | |
filter(state == "Louisiana") %>% | |
group_by(county) %>% | |
mutate(daily_cases = cases - lag(cases, | |
order_by = date, | |
default = 0), | |
daily_deaths = deaths - lag(deaths, | |
order_by = date, | |
default = 0)) %>% | |
mutate(daily_cases = | |
rollapply(daily_cases, | |
5, mean, align = "right", fill = NA)) | |
covid_la$daily_cases[covid_la$daily_cases<0] <- 0 | |
covid_la$subregion <- louisiana$county %>% | |
tolower() %>% | |
gsub(pattern = "\\.", replacement = "", x = .) %>% | |
gsub(pattern = "lasalle", replacement = "la salle", x = .) | |
map_louisiana <- | |
map_data("county") %>% | |
filter(region=="louisiana") | |
library(maps) | |
map_louisiana$polyname <- | |
paste(map_louisiana$region, | |
map_louisiana$subregion, | |
sep=",") | |
map_louisiana <- | |
map_louisiana %>% | |
left_join(maps::county.fips, "polyname") | |
map_louisiana$fips[map_louisiana$subregion=="st martin"] <- 22099 | |
map_louisiana$fips <- as.character(map_louisiana$fips) | |
covid_la$fips <- as.character(covid_la$fips) | |
covid_la <- covid_la %>% | |
filter(date >= as.Date("2020-06-01"), | |
!county == "Unknown") | |
# map_louisiana <- map_louisiana %>% | |
# select(long, lat, fips) | |
# | |
# colnames(map_louisiana) <- | |
# c("x", "y", "id") | |
covid_la1 <- left_join(map_louisiana, covid_la, by="fips") | |
library(transformr) | |
la_plot <- ggplot(covid_la1, | |
aes(x = long, y=lat, | |
group=group, | |
fill=daily_cases)) + | |
geom_polygon(color="gray") + | |
coord_map(projection = "albers", lat0=39, lat1=45) + | |
theme_void() + | |
scale_fill_viridis_c(option = "magma") + | |
theme(legend.title = element_blank(), | |
legend.position = c(0.53, 0.52), | |
legend.justification = c(0, 0), | |
legend.direction = "horizontal") + | |
transition_states(date, | |
transition_length = 2, | |
state_length = 2, | |
wrap = FALSE) + | |
labs(title = '{closest_state}', | |
subtitle = "5-day average of daily new cases per parish", | |
caption = "gist.github.com/jmclawson ") + | |
theme(plot.title = element_text(hjust = 0.5, | |
size=14, | |
face="bold"), | |
plot.subtitle = element_text(hjust = 0.5)) | |
animate(la_plot, start_pause = 5, end_pause = 15) | |
anim_save("COVID-19_louisiana.gif") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment