This is an additional theme for ggplot2 that generates an inverse black and white color scheme.
ggplot(mtcars, aes(wt, mpg)) + geom_point()
# Add theme_black()
ggplot(mtcars, aes(wt, mpg)) + geom_point(color = "white") + theme_black()
| library(foreign) | |
| mytest.alldata <- list() | |
| mytest.csvfile <- c() | |
| mytest.dtafile <- c() | |
| mytest.filelist <- list.files(path="data",pattern="*sav",recursive=FALSE,full.names=T) | |
| for (number in 1:length(mytest.filelist)) { | |
| mytest.alldata[[number]] <- read.spss(mytest.filelist[number],to.data.frame = TRUE) | |
| mytest.csvfile[number] <- gsub("data/|.sav","",mytest.filelist[number]) | |
| mytest.csvfile[number] <- paste(mytest.csvfile[number],".csv",sep="") | |
| mytest.dtafile[number] <- gsub("csv","dta",mytest.csvfile[number]) |
| library(NLP) | |
| library(openNLP) | |
| # credit due to http://stackoverflow.com/questions/30995232/how-to-use-opennlp-to-get-pos-tags-in-r | |
| ## SET "data.dir" to a directory containing text files. It's not designed for nested directories. | |
| data.dir <- "data/texts/" | |
| ## SET "saveas.file" to the destination directory. Resulting files have an "n" prepended to the file name, but it may be useful to save to a separate directory. | |
| saveas.file <- "data/texts-n/" |
| library(tidyverse) | |
| library(tidytext) | |
| library(reshape2) | |
| library(wordVectors) | |
| ##### Modeling a Corpus ##### | |
| # This process for preparing and modeling the corpus is adapted from Women Writers Project's template_word2vec.Rmd | |
| # These adaptations should allow for for preservation of modeling settings to aid in replicability. | |
| # After training the model, recall its setting parameters by exploring the object's attributes. |
| base_beg <- "https://en.wikipedia.org/wiki/Category:" | |
| base_end <- "th-century_novels" | |
| get_cat_pages <- function(){ | |
| categories <<- data.frame(century=c(), | |
| nation=c(), | |
| url=c(), | |
| stringsAsFactors = FALSE) | |
| for (century in centuries){ | |
| cat_url <- paste0(base_beg,century,base_end) |
| library(stylo) | |
| library(ggplot2) | |
| library(dendextend) | |
| # Load with this line: devtools::source_gist("79cd732fb9e6a4f1dd14f1caaac4ee2d") | |
| # Use df <- stylo() to save frequency results | |
| # Then use stylo2gg(df) to visualize principal components | |
| # Use stylo2gg(df, viz="hc") to show hierarchical clusters without rerunning stylo | |
| stylo2gg <- function(df, |
| remotes::install_github("kjhealy/covdata") | |
| library(covdata) | |
| library(dplyr) | |
| library(ggplot2) | |
| library(ggrepel) | |
| library(tidyr) | |
| covus_wide <- covus %>% | |
| select(date, state, measure, count) %>% | |
| pivot_wider(id_cols = c(date, state), |
| \newrobustcmd*{\mkcomprangezero}{% | |
| \begingroup | |
| \@ifstar | |
| {\blx@range@aux\blx@comprange@ii} | |
| {\blx@range@aux\blx@comprange@i}} | |
| \def\blx@comprange@i[#1][#2]#3{% | |
| \let\blx@tempa\@empty | |
| \protected\def\blx@range@out@value{\appto\blx@tempa}% | |
| \def\blx@range@out@item@process{#2}% | |
| \let\blx@range@out@delim\blx@range@out@value |
| # To prepare it for use in documentation, import a .bib file, strip Bibdesk's extra fields and additions, and enclose each entry with code compatible with Latex's {listings} package. | |
| library(dplyr) | |
| library(stringr) | |
| library(readr) | |
| # 0. Set relative file path for the bibfile | |
| # setwd() | |
| # 1. read the bib file as a vector of lines |
| \usepackage{listings} | |
| \usepackage{xcolor} | |
| \let\oldaddbibresource\addbibresource | |
| \renewcommand{\addbibresource}[1]{% | |
| \oldaddbibresource{#1}% | |
| \expandafter\newcommand\csname thebibfile\endcsname{#1}% | |
| } | |
| % \makeatletter |