Created
May 29, 2013 16:04
-
-
Save jni/5671465 to your computer and use it in GitHub Desktop.
Heisenbug: segfault when debugging problem with pdb, but only erroneous output when running in python or iPython.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
nuneziglesiasj@jni-lscc-mbp Thu May 30 01:38 | |
~ $ ipython --pylab | |
Activating auto-logging. Current session state plus future input saved. | |
Filename : /Users/nuneziglesiasj/ipython-logs/automatic-log--2013.5.30--1.38.py | |
Mode : backup | |
Output logging : False | |
Raw input log : False | |
Timestamping : False | |
State : active | |
Welcome to pylab, a matplotlib-based Python environment [backend: MacOSX]. | |
For more information, type 'help(pylab)'. | |
In [1]: from skimage.segmentation import slic | |
Exception AttributeError: "'UmfpackContext' object has no attribute '_symbolic'" in <bound method UmfpackContext.__del__ of <scipy.sparse.linalg.dsolve.umfpack.umfpack.UmfpackContext object at 0x106735a50>> ignored | |
In [2]: import pdb | |
In [3]: import numpy as np | |
In [4]: cpaste | |
Pasting code; enter '--' alone on the line to stop or use Ctrl-D. | |
: rnd = np.random.RandomState(0) | |
: img = np.zeros((20, 21, 3)) | |
: img[:10, :10, 0] = 1 | |
: img[10:, :10, 1] = 1 | |
: img[10:, 10:, 2] = 1 | |
: img += 0.01 * rnd.normal(size=img.shape) | |
: img[img > 1] = 1 | |
: img[img < 0] = 0 | |
:-- | |
In [5]: img.shape | |
Out[5]: (20, 21, 3) | |
In [6]: pdb.run('seg = slic(img, sigma=0, n_segments=4)', globals=globals()) | |
> <string>(1)<module>() | |
(Pdb) s | |
--Call-- | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(11)slic() | |
-> def slic(image, n_segments=100, ratio=10., max_iter=10, sigma=1, | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(80)slic() | |
-> spatial_dims = guess_spatial_dimensions(image) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(81)slic() | |
-> if spatial_dims is None and multichannel is None: | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(83)slic() | |
-> " by default. Use `multichannel=False` to interpret as " + | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(84)slic() | |
-> " 3D image with last dimension of length 3.") | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(85)slic() | |
-> warnings.warn(RuntimeWarning(msg)) | |
(Pdb) n | |
/Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py:85: RuntimeWarning: Images with dimensions (M, N, 3) are interpreted as 2D+RGB by default. Use `multichannel=False` to interpret as 3D image with last dimension of length 3. | |
warnings.warn(RuntimeWarning(msg)) | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(86)slic() | |
-> multichannel = True | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(89)slic() | |
-> if ((not multichannel and image.ndim not in [2, 3]) or | |
(Pdb) list | |
84 " 3D image with last dimension of length 3.") | |
85 warnings.warn(RuntimeWarning(msg)) | |
86 multichannel = True | |
87 elif multichannel is None: | |
88 multichannel = (spatial_dims + 1 == image.ndim) | |
89 -> if ((not multichannel and image.ndim not in [2, 3]) or | |
90 (multichannel and image.ndim not in [3, 4]) or | |
91 (multichannel and image.shape[-1] != 3)): | |
92 ValueError("Only 1- or 3-channel 2- or 3-D images are supported.") | |
93 image = img_as_float(image) | |
94 if not multichannel: | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(90)slic() | |
-> (multichannel and image.ndim not in [3, 4]) or | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(91)slic() | |
-> (multichannel and image.shape[-1] != 3)): | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(93)slic() | |
-> image = img_as_float(image) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(94)slic() | |
-> if not multichannel: | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(96)slic() | |
-> if image.ndim == 3: | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(98)slic() | |
-> image = image[np.newaxis, ...] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(99)slic() | |
-> if not isinstance(sigma, coll.Iterable): | |
(Pdb) p image.shape | |
(1, 20, 21, 3) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(100)slic() | |
-> sigma = np.array([sigma, sigma, sigma, 0]) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(101)slic() | |
-> if (sigma > 0).any(): | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(103)slic() | |
-> if convert2lab: | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(104)slic() | |
-> image = rgb2lab(image) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(107)slic() | |
-> depth, height, width = image.shape[:3] | |
(Pdb) p np.mean(image.ravel()) | |
22.885328104930853 | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(109)slic() | |
-> grid_z, grid_y, grid_x = np.mgrid[:depth, :height, :width] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(110)slic() | |
-> slices = regular_grid(image.shape[:3], n_segments) | |
(Pdb) p grid_z | |
array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]) | |
(Pdb) p grid_y | |
array([[[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0], | |
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1], | |
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2, 2, 2, 2, 2], | |
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
3, 3, 3, 3, 3], | |
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4], | |
[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | |
5, 5, 5, 5, 5], | |
[ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | |
6, 6, 6, 6, 6], | |
[ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | |
7, 7, 7, 7, 7], | |
[ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | |
8, 8, 8, 8, 8], | |
[ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, | |
9, 9, 9, 9, 9], | |
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | |
10, 10, 10, 10, 10], | |
[11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, | |
11, 11, 11, 11, 11], | |
[12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, | |
12, 12, 12, 12, 12], | |
[13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, | |
13, 13, 13, 13, 13], | |
[14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, | |
14, 14, 14, 14, 14], | |
[15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, | |
15, 15, 15, 15, 15], | |
[16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, | |
16, 16, 16, 16, 16], | |
[17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, | |
17, 17, 17, 17, 17], | |
[18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, | |
18, 18, 18, 18, 18], | |
[19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, | |
19, 19, 19, 19, 19]]]) | |
(Pdb) p grid_x | |
array([[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20], | |
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
16, 17, 18, 19, 20]]]) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(111)slic() | |
-> step_z, step_y, step_x = [int(s.step) for s in slices] | |
(Pdb) p slices | |
[slice(0.0, None, 1.0), slice(5.0, None, 10.0), slice(5.0, None, 10.0)] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(111)slic() | |
-> step_z, step_y, step_x = [int(s.step) for s in slices] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(111)slic() | |
-> step_z, step_y, step_x = [int(s.step) for s in slices] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(111)slic() | |
-> step_z, step_y, step_x = [int(s.step) for s in slices] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(112)slic() | |
-> means_z = grid_z[slices] | |
(Pdb) p means_x, means_y, means_z | |
*** NameError: NameError("name 'means_x' is not defined",) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(113)slic() | |
-> means_y = grid_y[slices] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(114)slic() | |
-> means_x = grid_x[slices] | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(116)slic() | |
-> means_color = np.zeros(means_z.shape + (3,)) | |
(Pdb) p means_x, means_y, means_z | |
(array([[[ 5, 15], | |
[ 5, 15]]]), array([[[ 5, 5], | |
[15, 15]]]), array([[[0, 0], | |
[0, 0]]])) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(117)slic() | |
-> means = np.concatenate([means_z[..., np.newaxis], means_y[..., np.newaxis], | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(118)slic() | |
-> means_x[..., np.newaxis], means_color | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(119)slic() | |
-> ], axis=-1).reshape(-1, 6) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(122)slic() | |
-> ratio = (ratio / float(max((step_z, step_y, step_x)))) ** 2 | |
(Pdb) p means | |
array([[ 0., 5., 5., 0., 0., 0.], | |
[ 0., 5., 15., 0., 0., 0.], | |
[ 0., 15., 5., 0., 0., 0.], | |
[ 0., 15., 15., 0., 0., 0.]]) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(123)slic() | |
-> image_zyx = np.concatenate([grid_z[..., np.newaxis], | |
(Pdb) p ratio | |
1.0 | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(124)slic() | |
-> grid_y[..., np.newaxis], | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(125)slic() | |
-> grid_x[..., np.newaxis], | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(126)slic() | |
-> image / ratio], axis=-1).copy("C") | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(127)slic() | |
-> nearest_mean = np.zeros((depth, height, width), dtype=np.intp) | |
(Pdb) p image_zyx.shape | |
(1, 20, 21, 6) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(128)slic() | |
-> distance = np.empty((depth, height, width), dtype=np.float) | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(129)slic() | |
-> segment_map = _slic_cython(image_zyx, nearest_mean, distance, means, | |
(Pdb) p np.__version__ | |
'1.6.1' | |
(Pdb) n | |
> /Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py(130)slic() | |
-> ratio, max_iter, n_segments) | |
(Pdb) n | |
Segmentation fault: 11 | |
(skimdev-travis) | |
nuneziglesiasj@jni-lscc-mbp Thu May 30 01:52 | |
~ $ python projects/skimage/skimage/segmentation/tests/test_slic.py | |
Exception AttributeError: "'UmfpackContext' object has no attribute '_symbolic'" in <bound method UmfpackContext.__del__ of <scipy.sparse.linalg.dsolve.umfpack.umfpack.UmfpackContext object at 0x107e50c50>> ignored | |
/Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py:85: RuntimeWarning: Images with dimensions (M, N, 3) are interpreted as 2D+RGB by default. Use `multichannel=False` to interpret as 3D image with last dimension of length 3. | |
warnings.warn(RuntimeWarning(msg)) | |
FF.. | |
====================================================================== | |
FAIL: test_slic.test_color_2d | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/Library/Frameworks/EPD64.framework/Versions/7.3/lib/python2.7/site-packages/nose-1.1.2-py2.7.egg/nose/case.py", line 197, in runTest | |
self.test(*self.arg) | |
File "/Users/nuneziglesiasj/projects/skimage/skimage/segmentation/tests/test_slic.py", line 22, in test_color_2d | |
assert_array_equal(seg[:10, 10:], 1) | |
File "/Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/numpy/testing/utils.py", line 707, in assert_array_equal | |
verbose=verbose, header='Arrays are not equal') | |
File "/Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/numpy/testing/utils.py", line 636, in assert_array_compare | |
raise AssertionError(msg) | |
AssertionError: | |
Arrays are not equal | |
(mismatch 43.6363636364%) | |
x: array([[3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1], | |
[3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1], | |
[3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1],... | |
y: array(1) | |
====================================================================== | |
FAIL: test_slic.test_gray_2d | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/Library/Frameworks/EPD64.framework/Versions/7.3/lib/python2.7/site-packages/nose-1.1.2-py2.7.egg/nose/case.py", line 197, in runTest | |
self.test(*self.arg) | |
File "/Users/nuneziglesiasj/projects/skimage/skimage/segmentation/tests/test_slic.py", line 38, in test_gray_2d | |
assert_array_equal(seg[:10, :10], 0) | |
File "/Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/numpy/testing/utils.py", line 707, in assert_array_equal | |
verbose=verbose, header='Arrays are not equal') | |
File "/Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/numpy/testing/utils.py", line 636, in assert_array_compare | |
raise AssertionError(msg) | |
AssertionError: | |
Arrays are not equal | |
(mismatch 100.0%) | |
x: array([[3, 3, 3, 3, 3, 3, 3, 3, 3, 3], | |
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3], | |
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],... | |
y: array(0) | |
---------------------------------------------------------------------- | |
Ran 4 tests in 0.055s | |
FAILED (failures=2) | |
(skimdev-travis) | |
nuneziglesiasj@jni-lscc-mbp Thu May 30 01:53 | |
~ $ ipython --pylab | |
Activating auto-logging. Current session state plus future input saved. | |
Filename : /Users/nuneziglesiasj/ipython-logs/automatic-log--2013.5.30--1.54.py | |
Mode : backup | |
Output logging : False | |
Raw input log : False | |
Timestamping : False | |
State : active | |
Welcome to pylab, a matplotlib-based Python environment [backend: MacOSX]. | |
For more information, type 'help(pylab)'. | |
In [1]: from skimage.segmentation import slic | |
Exception AttributeError: "'UmfpackContext' object has no attribute '_symbolic'" in <bound method UmfpackContext.__del__ of <scipy.sparse.linalg.dsolve.umfpack.umfpack.UmfpackContext object at 0x103f66050>> ignored | |
In [2]: import numpy as np | |
In [3]: import pdb | |
In [4]: cpaste | |
Pasting code; enter '--' alone on the line to stop or use Ctrl-D. | |
: rnd = np.random.RandomState(0) | |
: img = np.zeros((20, 21, 3)) | |
: img[:10, :10, 0] = 1 | |
: img[10:, :10, 1] = 1 | |
: img[10:, 10:, 2] = 1 | |
: img += 0.01 * rnd.normal(size=img.shape) | |
: img[img > 1] = 1 | |
: img[img < 0] = 0 | |
:-- | |
In [5]: seg = slic(img, sigma=0, n_segments=4) | |
/Users/nuneziglesiasj/venv/skimdev-travis/lib/python2.7/site-packages/scikit_image-0.9dev-py2.7-macosx-10.5-x86_64.egg/skimage/segmentation/slic_superpixels.py:85: RuntimeWarning: Images with dimensions (M, N, 3) are interpreted as 2D+RGB by default. Use `multichannel=False` to interpret as 3D image with last dimension of length 3. | |
warnings.warn(RuntimeWarning(msg)) | |
In [6]: imshow(seg) | |
Out[6]: <matplotlib.image.AxesImage at 0x103f115d0> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment