Created
October 19, 2015 04:45
-
-
Save jnothman/566ebde618ec18f2bea6 to your computer and use it in GitHub Desktop.
Generic scikit-learn estimator to cluster data and build predictive models for each cluster.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.base import BaseEstimator, Clone | |
from sklearn.utils import safe_mask | |
class ModelByCluster(BaseEstimator): | |
def __init__(self, clusterer, estimator): | |
self.clusterer = clusterer | |
self.estimator = estimator | |
def fit(self, X, y): | |
self.clusterer_ = clone(self.clusterer) | |
clusters = self.clusterer_.fit_predict(X) | |
n_clusters = len(np.unique(clusters)) | |
self.estimators_ = [] | |
for c in range(n_clusters): | |
mask = clusters == c | |
est = clone(self.estimator) | |
est.fit(X[safe_mask(X, mask)], y[safe_mask(y, mask)]) | |
self.estimators_.append(est) | |
return self | |
def predict(self, X): | |
clusters = self.clusterer_.predict(X) | |
y_tmp = [] | |
idx = [] | |
for c, est in enumerate(self.estimators_): | |
mask = clusters == c | |
idx.append(np.flatnonzero(mask)) | |
predictions.append(est.predict(X[safe_mask(X, mask)])) | |
y_tmp = np.concatenate(y_tmp) | |
idx = np.concatenate(idx) | |
y = np.empty_like(y_tmp) | |
y[idx] = y_tmp | |
return y |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
See scikit-learn/scikit-learn#5418