Created
March 22, 2017 11:33
-
-
Save jnothman/7af35286c61daac570a307ea0568eb5a to your computer and use it in GitHub Desktop.
example/test for scikit-learn#7602
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
============================ | |
Classifier Chain | |
============================ | |
An ensemble of 10 logistic regression classifier chains trained on a | |
multi-label dataset achieves a higher Jaccard similarity score than a set | |
of independently trained logistic regression models. | |
""" | |
import numpy as np | |
from sklearn.multioutput import ClassifierChain | |
from sklearn.multiclass import OneVsRestClassifier | |
from sklearn.metrics import jaccard_similarity_score | |
from sklearn.linear_model import LogisticRegression | |
from scipy.sparse import coo_matrix | |
import arff # pypi:liac-arff | |
def load_bibtex(path): | |
bibtex = arff.load(open(path), | |
return_type=arff.COO, encode_nominal=True) | |
data, row, col = bibtex['data'] | |
M = coo_matrix((np.array(data), (np.array(row), np.array(col))), | |
shape=(len(data), len(bibtex['attributes']))).tocsc() | |
y_mask = np.array([attr.startswith('TAG_') | |
for attr, _ in bibtex['attributes']]) | |
Y = M[:, y_mask][:10000].A | |
X = M[:, ~y_mask][:10000] | |
print(X.shape, Y.shape) | |
return X, Y | |
X_train, Y_train = load_bibtex('/Users/joel/Downloads/bibtex-train.arff') | |
X_test, Y_test = load_bibtex('/Users/joel/Downloads/bibtex-test.arff') | |
# Fit an independent logistic regression model for each class using the | |
# OneVsRestClassifier wrapper | |
ovr = OneVsRestClassifier(LogisticRegression()) | |
ovr.fit(X_train, Y_train) | |
Y_pred_ovr = ovr.predict(X_test) | |
print("Independent models Jaccard similarity score:", | |
jaccard_similarity_score(Y_test, Y_pred_ovr)) | |
# Fit an ensemble of logistic regression classifier chains and take the | |
# take the average prediction of all the chains | |
chains = [ClassifierChain(LogisticRegression(), cv=3, order='random') | |
for i in range(10)] | |
scores = [] | |
Y_preds = [] | |
for chain in chains: | |
Y_pred = chain.fit(X_train, Y_train).predict(X_test) | |
scores.append(jaccard_similarity_score(Y_test, Y_pred)) | |
print(scores[-1]) | |
Y_preds.append(Y_pred) | |
Y_pred_ensemble = np.array(Y_preds).mean(axis=0) | |
print("Classifier chain ensemble Jaccard similarity score:", | |
jaccard_similarity_score(Y_test, Y_pred_ensemble >= .5)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment