Created
November 23, 2014 22:20
-
-
Save jnpaulson/9cfe56f091d96dd27521 to your computer and use it in GitHub Desktop.
predict patient from k mds coordinates and accuracy
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
j = unlist(locals[2:3]) | |
obj2 = obj[,j] | |
sampleID2 = sampleID[j] | |
mat = MRcounts(obj2,norm=TRUE,log=TRUE) | |
otusToKeep <- which(rowSums(mat)>0) | |
otuVars<-rowSds(mat[otusToKeep,]) | |
otuIndices<-otusToKeep[order(otuVars,decreasing=TRUE)[1:1000]] | |
mat <- mat[otuIndices,] | |
mat = t(mat) | |
d <- dist(mat) | |
ord = cmdscale(d,k=10) | |
cl = factor(as.character(sampleID2)) | |
# Arbitrarily chose 10 cooridnates | |
x = lda(ord[,1:10],grouping=cl,CV=TRUE) | |
x = x$post # posterior probs | |
kk = which(is.na(rowSums(x))) | |
x = x[-kk,] | |
cl = cl[-kk] | |
pred = sapply(1:nrow(x),function(i){ | |
names(which(x[i,]==rowMax(x)[i])) | |
}) | |
combo = cbind(truth = as.character(cl),pred) | |
sum(combo[,1]==combo[,2])/nrow(combo) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment