Last active
March 27, 2018 11:55
-
-
Save jo-makar/d20674561f29e5276361fa718e085aaa to your computer and use it in GitHub Desktop.
Thread-safe metrics storage that calculates rate of change using linear regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import collections, datetime, threading, time | |
class MetricsThread(threading.Thread): | |
''' | |
Thread-safe metrics storage that calculates rate of change using linear regression (ie line-fitting). | |
Values can be stored by (external) increment calls and/or by periodic callback functions. | |
Keyword arguments: | |
callbacks -- metrics to be also determined periodically via callbacks, | |
each callback is expected to return a (name, value) tuple | |
period -- period as a timedelta object | |
histlen -- history length | |
''' | |
def __init__(self, callbacks=[], period=datetime.timedelta(minutes=10), histlen=10): | |
threading.Thread.__init__(self) | |
self.daemon = True | |
self.callbacks = callbacks | |
self.period = period | |
# Current values | |
self.current = {} | |
self.curlock = threading.Lock() | |
# Historical values | |
self.history = collections.deque(maxlen=histlen) | |
self.histlock = threading.Lock() | |
# Rates of change | |
self.rates = {} | |
self.ratelock = threading.Lock() | |
def increment(self, name): | |
'''Increment value associated with name''' | |
with self.curlock: | |
if name not in self.current: | |
self.current[name] = 0 | |
self.current[name] += 1 | |
def rate(self, name): | |
''' | |
Return rate of change (as change/second) of value associated with name. | |
This rate is calculated using linear regression against the historical values. | |
''' | |
with self.ratelock: | |
rv = self.rates.get(name) | |
return rv | |
def run(self): | |
def linreg(x, y): | |
''' | |
Linear regression, returns a, b of y=a+bx that best fits the samples. | |
linreg(x=[43,21,25,42,57,59], y=[99,65,79,75,87,81]) => a=65.1416, b=0.3852 | |
''' | |
assert len(x) == len(y) | |
n = len(x) | |
assert n > 2 | |
x2 = map(lambda i:i*i, x) | |
xy = map(lambda i,j:i*j, x,y) | |
a = (sum(y)*sum(x2) - sum(x)*sum(xy)) / float(n*sum(x2) - sum(x)*sum(x)) | |
b = (n*sum(xy) - sum(x)*sum(y)) / float(n*sum(x2) - sum(x)*sum(x)) | |
return a, b | |
while True: | |
time.sleep(self.period.total_seconds()) | |
for cb in self.callbacks: | |
try: | |
name, val = cb() | |
with self.curlock: | |
self.current[name] = val | |
except: | |
pass | |
with self.histlock: | |
with self.curlock: | |
self.history.append([datetime.datetime.now(), | |
copy.copy(self.current)]) | |
logger.info('metrics history recorded: %r', self.current) | |
with self.ratelock: | |
# Calculate the rate of change for the values just recorded | |
self.rates = {} | |
for k in self.history[-1][1].keys(): | |
x = [] | |
y = [] | |
for i in range(len(self.history)): | |
if k in self.history[i][1]: | |
# Convert to seconds since the epoch (ie Unix time) | |
x += [time.mktime(self.history[i][0].timetuple())] | |
y += [self.history[i][1][k]] | |
# Shift the time values (to avoid rounding errors) | |
x0 = x[0] | |
x = map(lambda i:i-x0, x) | |
if len(x) > 2: | |
a, b = linreg(x, y) | |
self.rates[k] = b | |
#logger.info('metrics rates calculated: %r', self.rates) | |
s = '{' + (', '.join(['%s: %.3f' % (k,v) for k,v in self.rates.iteritems()])) + '}' | |
logger.info('metrics rates calculated: %s', s) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment