Skip to content

Instantly share code, notes, and snippets.

@joaomacalos
joaomacalos / compjl2.jl
Created June 15, 2021 13:48
Comparison-Julia2
# Plot
Plots.plot(
commodities.date,
commodities.comm,
html_output_format=:png, # Important for nice printing
label = "All commodity prices (IMF)",
legend= :bottomright
)
@joaomacalos
joaomacalos / compjl1.jl
Created June 15, 2021 13:47
Comparison-Julia1
# Load required packages
using CSV
using DataFrames
using Plots
using Pipe
using Dates
# Read csv
commodities = CSV.read("../../../Datasets/imf-commodities.csv", DataFrame);
@joaomacalos
joaomacalos / comppy2.py
Created June 15, 2021 13:46
Comparison-Python2
# Plot
sns.lineplot(
data=commodities,
x='date', y='comm',
label='All commodity prices (IMF)'
);
plt.legend(loc="lower right")
plt.show()
@joaomacalos
joaomacalos / comppy1.py
Created June 15, 2021 13:43
Comparison-Python1
# Load required libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Read csv
commodities = pd.read_csv('../../../Datasets/imf-commodities.csv')
# Data wrangling
commodities = (
@joaomacalos
joaomacalos / comp2.R
Last active June 15, 2021 13:41
Comparison-R2
# Plot
commodities %>%
ggplot(aes(x=date, y=comm)) +
geom_line(aes(color='All commodity prices (IMF)')) +
theme(
legend.position = c(.8, .1),
legend.title = element_blank()
) +
labs(x="", y="") +
scale_color_manual(values="black")
@joaomacalos
joaomacalos / comp1.R
Last active June 15, 2021 13:37
comparison-r1
# Load required packages
library(tidyverse)
library(lubridate)
# Read csv
commodities <- read_csv('../../../Datasets/imf-commodities.csv')
# Tidy
commodities <- commodities %>%
select(date = Commodity, comm = PALLFNF) %>%
@joaomacalos
joaomacalos / hashtag12-populartweets.py
Created May 1, 2021 14:18
hashtag12-populartweets
for i in range(1, 5):
print(sl_tweets.sort_values('favorites', ascending=False).head(5).reset_index().full_text[i], '\n --')
from pywaffle import Waffle
data = {'In favor (99)': 99/50, 'Against (7436)': 7436/50}
fig = plt.figure(
FigureClass=Waffle,
rows=10,
values=data,
colors=("#5b9aa0", "#e06377"),
title={'label': 'SupearLeague hashtags \n \n',
@joaomacalos
joaomacalos / hashtag10-againstfavor.py
Created May 1, 2021 14:13
hashtag10-againstfavortable
# Get only hashtags in favor and against the superleague:
against_hashtag = classified_hashtags.hashtag[classified_hashtags.label==1]
favor_hashtag = classified_hashtags.hashtag[classified_hashtags.label==3]
# Filter against hashtags among all hashtags (to get the count of each one)
no_hashtags = [x for x in hashtags if x in list(against_hashtag)]
# Get top10 hashtags
top10_no_hashtags = list(pd.Series(no_hashtags).value_counts().head(10).index)
sl_tweets = (sl_tweets
.assign(against=lambda y: [any(x in sublist for x in against_hashtag)
for sublist in y.hashtags],
@joaomacalos
joaomacalos / hashtag9-classifyhashtag.py
Created May 1, 2021 14:11
hashtag9-classifyhashtag
classified_hashtags = pd.read_csv('unique_hashtag_clean.csv').iloc[:, 1:]
classified_hashtags.label.value_counts()
#> 2.0 8846
#> 1.0 530
#> 3.0 43
#> Name: label, dtype: int64