Created
June 18, 2018 21:55
-
-
Save jobliz/990991ba501086c83a442b2913833dca to your computer and use it in GitHub Desktop.
Pandas/Spark dataframe conversion with retail dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
CSV Dataset | |
Download XLSX dataset from http://archive.ics.uci.edu/ml/datasets/online+retail | |
Convert to CSV with LibreOffice Calc | |
Spark timestamp and datetime conversion from string: | |
https://stackoverflow.com/questions/46295879/how-to-read-date-in-custom-format-from-csv-file | |
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html | |
Pandas dataframe to spark | |
https://stackoverflow.com/questions/37513355/converting-pandas-dataframe-into-spark-dataframe-error | |
https://github.com/awantik/pyspark-tutorial/wiki/Migrating-from-Pandas-to-Apache-Spark%E2%80%99s-DataFrame | |
Spark dataframe to Pandas | |
https://stackoverflow.com/questions/40651003/attributeerror-sparkcontext-object-has-no-attribute-createdataframe-using-s | |
There is no datetime in pandas, | |
https://stackoverflow.com/questions/21269399/datetime-dtypes-in-pandas-read-csv | |
https://stackoverflow.com/questions/17465045/can-pandas-automatically-recognize-dates | |
""" | |
import pandas as pd | |
from pyspark import SparkContext, SparkConf | |
from pyspark.sql import SparkSession, SQLContext | |
from pyspark.sql import types as sparktypes | |
context = SparkContext() | |
spark = SparkSession(context) | |
spark.conf.set("spark.sql.shuffle.partitions", "5") | |
# dateFormat apparently does nothing here | |
spark_df = spark\ | |
.read\ | |
.option("inferSchema", "true")\ | |
.option("header", "true")\ | |
.option("dateFormat", "dd/MM/yyyy H:m")\ | |
.option("timestampFormat", "dd/MM/yyyy H:m")\ | |
.csv("retail.csv") | |
print("SCHEMA") | |
print(spark_df.printSchema()) | |
print("") | |
# pandas dataframe | |
parse_dates = ['InvoiceDate'] | |
# works but slow, better to parse date explicitly | |
# pdf = pd.read_csv('retail.csv', parse_dates=parse_dates) | |
# dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S') | |
dateparse = lambda x: pd.datetime.strptime(x, '%m/%d/%Y %H:%M') | |
pdf = pd.read_csv('retail.csv', parse_dates=parse_dates, date_parser=dateparse) | |
print(pdf.dtypes) | |
# spark/pandas conversions | |
print("\nSpark to Pandas:") | |
print(spark_df.toPandas()) | |
print("\nPandas to Spark:") | |
sqlcontext = SQLContext(context) | |
# https://spark.apache.org/docs/latest/sql-programming-guide.html#programmatically-specifying-the-schema | |
schema = sparktypes.StructType([ | |
sparktypes.StructField('InvoiceNo', sparktypes.StringType(), True), | |
sparktypes.StructField('StockCode', sparktypes.StringType(), True), | |
sparktypes.StructField('Description', sparktypes.StringType(), True), | |
sparktypes.StructField('Quantity', sparktypes.IntegerType(), True), | |
sparktypes.StructField('InvoiceDate', sparktypes.DateType(), True), | |
sparktypes.StructField('UnitPrice', sparktypes.FloatType(), True), | |
sparktypes.StructField('CustomerID', sparktypes.FloatType(), True), | |
sparktypes.StructField('Country', sparktypes.StringType(), True), | |
]) | |
spark_df = sqlcontext.createDataFrame(pdf, schema) | |
print(spark_df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment