Created
April 19, 2021 16:00
-
-
Save jobonaf/f20f4902942797a4a004a3a13614b261 to your computer and use it in GitHub Desktop.
linear fit annual average vs Nth maximum value
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
mean_vs_rankN <- function(poll = "PM10", | |
nrank = 36, | |
threshold = 50, | |
fy = 2009, | |
ly = 2018) { | |
library(dplyr) | |
Dat <- readRDS(paste0("data/",poll,"_daily_",fy,"-",ly,".rds")) | |
Dat %>% | |
group_by(Year=format(Time,"%Y"),Point) %>% | |
arrange(desc(Value), .by_group=T) %>% | |
summarize(Y_ave=mean(Value,na.rm=T), | |
nValid=sum(!is.na(Value)), | |
Y_rank=nth(Value,nrank)) %>% | |
filter(nValid>=365*0.9) %>% | |
select(-nValid) %>% | |
ungroup()-> dat | |
fit <- lm(data=dat, formula=Y_ave~Y_rank) | |
thr <- predict(newdata=data.frame(Y_rank=threshold), object=fit) | |
ii <- signif(fit$coefficients[1],3) ; names(ii) <- NULL | |
ss <- signif(fit$coefficients[2],3) ; names(ss) <- NULL | |
ll <- bquote("best fit:" ~ .(poll)["y.ave"] %~~% .(ii) ~ | |
"+" ~ .(ss) %.% .(poll)["rank"*.(nrank)]) | |
source("/u/arpa/bonafeg/src/rutilante/R/gg_themes.R") | |
library(ggplot2) | |
library(scales) | |
ggplot(data=dat, aes(x=Y_rank, y=Y_ave)) + | |
geom_point(col="grey70") + | |
scale_x_continuous(limits=c(0,max(c(dat$Y_rank,threshold),na.rm=T))) + | |
scale_y_continuous(limits=c(0,max(c(dat$Y_ave,thr),na.rm=T))) + | |
geom_abline(slope=fit$coefficients[2], | |
intercept=fit$coefficients[1], | |
lty=2,col=muted("orange")) + | |
geom_vline(xintercept=threshold,col=muted("blue")) + | |
geom_hline(yintercept=thr,col=muted("blue")) + | |
annotate("text",x=0,y=thr*1.01,label=signif(thr,3), | |
vjust=0,family="Decima WE",col=muted("blue")) + | |
annotate("text", y=0, x=threshold*1.01, label=threshold, | |
hjust=0,vjust=1,family="Decima WE",col=muted("blue")) + | |
theme_fvg() + | |
ggtitle(paste0(poll, " (",fy,"-",ly,")"), | |
subtitle=ll) + | |
theme(panel.grid=element_blank()) + | |
xlab(bquote(.(poll)["rank"*.(nrank)] ~ (mu*g/m^3))) + | |
ylab(bquote(.(poll)["y.ave"] ~ (mu*g/m^3))) -> p | |
ggsave_fvg(p, | |
filename=paste0(poll,".mean-vs-rank",nrank, | |
".",fy,"-",ly,".pdf"), | |
width=5, height=5) | |
saveRDS(list(fitted_model=fit, N=nrank, thresholds_Nth=threshold, thresholds_yave=unname(thr)), | |
file=paste0(poll,".mean-vs-rank",nrank,".",fy,"-",ly,".rds")) | |
} | |
mean_vs_rankN(poll = "PM10", nrank = 36, threshold = 50, fy = 2009, ly = 2018) | |
mean_vs_rankN(poll = "PM10", nrank = 4, threshold = c(150,100,75,50), fy = 2009, ly = 2018) | |
mean_vs_rankN(poll = "PM2.5", nrank = 4, threshold = c(75,50,37.5,25), fy = 2009, ly = 2018) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment