Created
September 4, 2018 23:26
-
-
Save joeyism/0eac4bd1f5560f9d76207ba4f8a12323 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def __one_hot__(num, dim=1000): | |
vec = np.zeros(dim) | |
vec[num] = 1 | |
return vec | |
def transform_to_input_output(input_output, dim=1000): | |
input_vals = [] | |
output_vals = [] | |
for input_val, output_val in input_output: | |
input_vals.append(input_val) | |
output_vals.append(output_val) | |
return np.array(input_vals), np.array( | |
[__one_hot__(out, dim=dim) | |
for out in output_vals], | |
dtype="uint8") | |
def reshape(image, new_size): | |
return skimage.transform.resize(image, new_size, mode="constant") | |
def transform_to_input_output_and_pad(input_output, new_size=(224, 224), dim=1000): | |
inp, out = transform_to_input_output(input_output, dim=dim) | |
return np.array([reshape(i, new_size) for i in inp]), out | |
def reshape_batch(batch, new_size, dim=10): | |
input_batch=[] | |
output_batch=[] | |
for image, out in batch: | |
new_image = reshape(image, new_size) | |
input_batch.append(new_image) | |
output_batch.append(one_hot(out, dim=dim)) | |
return input_batch, output_batch | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment