Last active
September 4, 2018 22:22
-
-
Save joeyism/1f796ec68099a5ec9688b07c25204f51 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from numpy import * | |
| import tensorflow as tf | |
| image_size = 224 | |
| train_x = zeros((1, image_size, image_size ,3)).astype(float32) | |
| xdim = train_x.shape[1:] | |
| net_data = load(open("pretrained/bvlc_alexnet.npy", "rb"), encoding="latin1").item() | |
| def conv(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding="VALID", group=1): | |
| '''From https://github.com/ethereon/caffe-tensorflow | |
| ''' | |
| c_i = input.get_shape()[-1] | |
| assert c_i%group==0 | |
| assert c_o%group==0 | |
| convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding) | |
| if group==1: | |
| conv = convolve(input, kernel) | |
| else: | |
| input_groups = tf.split(input, group, 3) #tf.split(3, group, input) | |
| kernel_groups = tf.split(kernel, group, 3) #tf.split(3, group, kernel) | |
| output_groups = [convolve(i, k) for i,k in zip(input_groups, kernel_groups)] | |
| conv = tf.concat(output_groups, 3) #tf.concat(3, output_groups) | |
| return tf.reshape(tf.nn.bias_add(conv, biases), [-1]+conv.get_shape().as_list()[1:]) | |
| x = tf.placeholder(tf.float32, (None,) + xdim) | |
| #conv1 | |
| #conv(11, 11, 96, 4, 4, padding='VALID', name='conv1') | |
| k_h = 11; k_w = 11; c_o = 96; s_h = 4; s_w = 4 | |
| conv1W = tf.Variable(net_data["conv1"][0]) | |
| conv1b = tf.Variable(net_data["conv1"][1]) | |
| conv1_in = conv(x, conv1W, conv1b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=1) | |
| conv1 = tf.nn.relu(conv1_in) | |
| #lrn1 | |
| #lrn(2, 2e-05, 0.75, name='norm1') | |
| radius = 2; alpha = 2e-05; beta = 0.75; bias = 1.0 | |
| lrn1 = tf.nn.local_response_normalization(conv1, | |
| depth_radius=radius, | |
| alpha=alpha, | |
| beta=beta, | |
| bias=bias) | |
| #maxpool1 | |
| #max_pool(3, 3, 2, 2, padding='VALID', name='pool1') | |
| k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID' | |
| maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding) | |
| #conv2 | |
| #conv(5, 5, 256, 1, 1, group=2, name='conv2') | |
| k_h = 5; k_w = 5; c_o = 256; s_h = 1; s_w = 1; group = 2 | |
| conv2W = tf.Variable(net_data["conv2"][0]) | |
| conv2b = tf.Variable(net_data["conv2"][1]) | |
| conv2_in = conv(maxpool1, conv2W, conv2b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group) | |
| conv2 = tf.nn.relu(conv2_in) | |
| #lrn2 | |
| #lrn(2, 2e-05, 0.75, name='norm2') | |
| radius = 2; alpha = 2e-05; beta = 0.75; bias = 1.0 | |
| lrn2 = tf.nn.local_response_normalization(conv2, | |
| depth_radius=radius, | |
| alpha=alpha, | |
| beta=beta, | |
| bias=bias) | |
| #maxpool2 | |
| #max_pool(3, 3, 2, 2, padding='VALID', name='pool2') | |
| k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID' | |
| maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding) | |
| #conv3 | |
| #conv(3, 3, 384, 1, 1, name='conv3') | |
| k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 1 | |
| conv3W = tf.Variable(net_data["conv3"][0]) | |
| conv3b = tf.Variable(net_data["conv3"][1]) | |
| conv3_in = conv(maxpool2, conv3W, conv3b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group) | |
| conv3 = tf.nn.relu(conv3_in) | |
| #conv4 | |
| #conv(3, 3, 384, 1, 1, group=2, name='conv4') | |
| k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 2 | |
| conv4W = tf.Variable(net_data["conv4"][0]) | |
| conv4b = tf.Variable(net_data["conv4"][1]) | |
| conv4_in = conv(conv3, conv4W, conv4b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group) | |
| conv4 = tf.nn.relu(conv4_in) | |
| #conv5 | |
| #conv(3, 3, 256, 1, 1, group=2, name='conv5') | |
| k_h = 3; k_w = 3; c_o = 256; s_h = 1; s_w = 1; group = 2 | |
| conv5W = tf.Variable(net_data["conv5"][0]) | |
| conv5b = tf.Variable(net_data["conv5"][1]) | |
| conv5_in = conv(conv4, conv5W, conv5b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group) | |
| conv5 = tf.nn.relu(conv5_in) | |
| #maxpool5 | |
| #max_pool(3, 3, 2, 2, padding='VALID', name='pool5') | |
| k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID' | |
| maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding) | |
| #fc6 | |
| #fc(4096, name='fc6') | |
| fc6W = tf.Variable(net_data["fc6"][0]) | |
| fc6b = tf.Variable(net_data["fc6"][1]) | |
| fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(prod(maxpool5.get_shape()[1:]))]), fc6W, fc6b) | |
| #fc7 | |
| #fc(4096, name='fc7') | |
| fc7W = tf.Variable(net_data["fc7"][0]) | |
| fc7b = tf.Variable(net_data["fc7"][1]) | |
| fc7 = tf.nn.relu_layer(fc6, fc7W, fc7b) | |
| #fc8 | |
| #fc(1000, relu=False, name='fc8') | |
| fc8W = tf.Variable(net_data["fc8"][0]) | |
| fc8b = tf.Variable(net_data["fc8"][1]) | |
| fc8 = tf.nn.xw_plus_b(fc7, fc8W, fc8b) | |
| #prob | |
| #softmax(name='prob')) | |
| prob = tf.nn.softmax(fc8) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment