Created
August 11, 2018 23:53
-
-
Save joeyism/693680c218a37c89663fb1273b22638c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from cifar import Cifar | |
from tqdm import tqdm | |
import tensorflow as tf | |
import model | |
import helper | |
learning_rate = 0.001 | |
batch_size = 16 | |
no_of_epochs = 10 | |
y = tf.placeholder(tf.float32, [None, model.n_classes]) | |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( | |
logits=model.out, | |
labels=y)) | |
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) | |
correct_pred = tf.equal(tf.argmax(model.out, 1), tf.argmax(y, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) | |
cifar = Cifar(batch_size=batch_size) | |
init = tf.initialize_all_variables() | |
with tf.Session() as sess: | |
sess.run(init) | |
for epoch in range(no_of_epochs): | |
for batch in tqdm(cifar.batches, | |
desc="Epoch {}".format(epoch), | |
unit="batch"): | |
inp, out = helper.transform_to_input_output(batch, dim=model.n_classes) | |
sess.run([optimizer], | |
feed_dict={ | |
model.input_images: inp, | |
y: out}) | |
acc = sess.run(accuracy, | |
feed_dict={ | |
model.input_images: inp, | |
y: out}) | |
loss = sess.run(cost, | |
feed_dict={ | |
model.input_images: inp, | |
y: out}) | |
print("Acc: {} Loss: {}".format(acc, loss)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment