Skip to content

Instantly share code, notes, and snippets.

@joeyism
Created August 11, 2018 23:53
Show Gist options
  • Save joeyism/693680c218a37c89663fb1273b22638c to your computer and use it in GitHub Desktop.
Save joeyism/693680c218a37c89663fb1273b22638c to your computer and use it in GitHub Desktop.
from cifar import Cifar
from tqdm import tqdm
import tensorflow as tf
import model
import helper
learning_rate = 0.001
batch_size = 16
no_of_epochs = 10
y = tf.placeholder(tf.float32, [None, model.n_classes])
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=model.out,
labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
correct_pred = tf.equal(tf.argmax(model.out, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
cifar = Cifar(batch_size=batch_size)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for epoch in range(no_of_epochs):
for batch in tqdm(cifar.batches,
desc="Epoch {}".format(epoch),
unit="batch"):
inp, out = helper.transform_to_input_output(batch, dim=model.n_classes)
sess.run([optimizer],
feed_dict={
model.input_images: inp,
y: out})
acc = sess.run(accuracy,
feed_dict={
model.input_images: inp,
y: out})
loss = sess.run(cost,
feed_dict={
model.input_images: inp,
y: out})
print("Acc: {} Loss: {}".format(acc, loss))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment