Last active
September 22, 2019 03:31
-
-
Save joeyism/740765023aca6a654a4ea8c7e20bcbcc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
image_size = 32 | |
input_images = tf.placeholder(tf.float32, | |
shape=[None, image_size, image_size, 3], | |
name="input_images") | |
# First CONV layer | |
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv1_weights") | |
conv = tf.nn.conv2d(input_images, kernel, [1, 4, 4, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([96])) | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv1 = tf.nn.relu(conv_with_bias, name="conv1") | |
lrn1 = tf.nn.lrn(conv1, | |
alpha=1e-4, | |
beta=0.75, | |
depth_radius=2, | |
bias=2.0) | |
pooled_conv1 = tf.nn.max_pool(lrn1, | |
ksize=[1, 3, 3, 1], | |
strides=[1, 2, 2, 1], | |
padding="SAME", | |
name="pool1") | |
# Second CONV Layer | |
kernel = tf.Variable(tf.truncated_normal([5, 5, 96, 256], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv2_weights") | |
conv = tf.nn.conv2d(pooled_conv1, kernel, [1, 4, 4, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([256]), name="conv2_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv2 = tf.nn.relu(conv_with_bias, name="conv2") | |
lrn2 = tf.nn.lrn(conv2, | |
alpha=1e-4, | |
beta=0.75, | |
depth_radius=2, | |
bias=2.0) | |
pooled_conv2 = tf.nn.max_pool(lrn2, | |
ksize=[1, 3, 3, 1], | |
strides=[1, 2, 2, 1], | |
padding="SAME", | |
name="pool2") | |
# Third CONV layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 384], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv3_weights") | |
conv = tf.nn.conv2d(pooled_conv2, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([384]), name="conv3_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv3 = tf.nn.relu(conv_with_bias, name="conv3") | |
# Fourth CONV layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 384], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv4_weights") | |
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([384]), name="conv4_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv4 = tf.nn.relu(conv_with_bias, name="conv4") | |
# Fifth CONV Layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv5_weights") | |
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([256]), name="conv5_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv5 = tf.nn.relu(conv_with_bias, name="conv5") | |
# Fully Connected Layers | |
fc_size = 256 | |
conv5 = tf.layers.flatten(conv5) # tf.flatten | |
weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc1_weights") | |
bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc1_bias") | |
fc1 = tf.matmul(conv5, weights) + bias | |
fc1 = tf.nn.relu(fc1, name="fc1") | |
weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc2_weights") | |
bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc2_bias") | |
fc2 = tf.matmul(fc1, weights) + bias | |
fc2 = tf.nn.relu(fc2, name="fc2") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This code seems to need an update, many of the functions seem to be deprecated. Especially having trouble with replacing "tf.flatten" on line 83.