Last active
August 8, 2018 01:16
-
-
Save joeyism/8ef7889c4c44d544cb71cf5fbe94b708 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
n_classes = 10 # <-- newly added constant | |
image_size = 32 | |
input_images = tf.placeholder(tf.float32, | |
shape=[None, image_size, image_size, 3], | |
name="input_images") | |
# First CONV layer | |
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv1_weights") | |
conv = tf.nn.conv2d(input_images, kernel, [1, 4, 4, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([96])) | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv1 = tf.nn.relu(conv_with_bias, name="conv1") | |
lrn1 = tf.nn.lrn(conv1, | |
alpha=1e-4, | |
beta=0.75, | |
depth_radius=2, | |
bias=2.0) | |
pooled_conv1 = tf.nn.max_pool(lrn1, | |
ksize=[1, 3, 3, 1], | |
strides=[1, 2, 2, 1], | |
padding="SAME", | |
name="pool1") | |
# Second CONV Layer | |
kernel = tf.Variable(tf.truncated_normal([5, 5, 96, 256], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv2_weights") | |
conv = tf.nn.conv2d(pooled_conv1, kernel, [1, 4, 4, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([256]), name="conv2_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv2 = tf.nn.relu(conv_with_bias, name="conv2") | |
lrn2 = tf.nn.lrn(conv2, | |
alpha=1e-4, | |
beta=0.75, | |
depth_radius=2, | |
bias=2.0) | |
pooled_conv2 = tf.nn.max_pool(lrn2, | |
ksize=[1, 3, 3, 1], | |
strides=[1, 2, 2, 1], | |
padding="SAME", | |
name="pool2") | |
# Third CONV layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 384], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv3_weights") | |
conv = tf.nn.conv2d(pooled_conv2, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([384]), name="conv3_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv3 = tf.nn.relu(conv_with_bias, name="conv3") | |
# Fourth CONV layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 384], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv4_weights") | |
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([384]), name="conv4_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv4 = tf.nn.relu(conv_with_bias, name="conv4") | |
# Fifth CONV Layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv5_weights") | |
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([256]), name="conv5_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv5 = tf.nn.relu(conv_with_bias, name="conv5") | |
# Fully Connected Layers | |
fc_size = 256 | |
conv5 = tf.layers.flatten(conv5) # tf.flatten | |
weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc1_weights") | |
bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc1_bias") | |
fc1 = tf.matmul(conv5, weights) + bias | |
fc1 = tf.nn.relu(fc1, name="fc1") | |
weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc2_weights") | |
bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc2_bias") | |
fc2 = tf.matmul(fc1, weights) + bias | |
fc2 = tf.nn.relu(fc2, name="fc2") | |
weights = tf.Variable(tf.zeros([fc_size, n_classes]), name="output_weight") | |
bias = tf.Variable(tf.truncated_normal([n_classes]), name="output_bias") | |
out = tf.matmul(fc2, weights) + bias |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment