Created
August 15, 2018 02:14
-
-
Save joeyism/e17d0eb72dfcf129bcf36404541926a4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
n_classes = 10 | |
image_size = 32 | |
dropout = tf.placeholder(tf.float32, name="dropout_rate") | |
input_images = tf.placeholder(tf.float32, | |
shape=[None, image_size, image_size, 3], | |
name="input_images") | |
# Network Size | |
first_conv_size = 96 | |
second_conv_size = 256 | |
third_conv_size = 384 | |
fourth_conv_size = 384 | |
fifth_conv_size = 256 | |
# First CONV layer | |
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, first_conv_size], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv1_weights") | |
conv = tf.nn.conv2d(input_images, kernel, [1, 4, 4, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([first_conv_size])) | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv1 = tf.nn.relu(conv_with_bias, name="conv1") | |
lrn1 = tf.nn.lrn(conv1, | |
alpha=1e-4, | |
beta=0.75, | |
depth_radius=2, | |
bias=2.0) | |
pooled_conv1 = tf.nn.max_pool(lrn1, | |
ksize=[1, 3, 3, 1], | |
strides=[1, 2, 2, 1], | |
padding="SAME", | |
name="pool1") | |
# Second CONV Layer | |
kernel = tf.Variable(tf.truncated_normal([5, 5, first_conv_size, second_conv_size], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv2_weights") | |
conv = tf.nn.conv2d(pooled_conv1, kernel, [1, 4, 4, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([second_conv_size]), name="conv2_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv2 = tf.nn.relu(conv_with_bias, name="conv2") | |
lrn2 = tf.nn.lrn(conv2, | |
alpha=1e-4, | |
beta=0.75, | |
depth_radius=2, | |
bias=2.0) | |
pooled_conv2 = tf.nn.max_pool(lrn2, | |
ksize=[1, 3, 3, 1], | |
strides=[1, 2, 2, 1], | |
padding="SAME", | |
name="pool2") | |
# Third CONV layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, second_conv_size, third_conv_size], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv3_weights") | |
conv = tf.nn.conv2d(pooled_conv2, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([third_conv_size]), name="conv3_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv3 = tf.nn.relu(conv_with_bias, name="conv3") | |
# Fourth CONV layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, third_conv_size, fourth_conv_size], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv4_weights") | |
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([fourth_conv_size]), name="conv4_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv4 = tf.nn.relu(conv_with_bias, name="conv4") | |
# Fifth CONV Layer | |
kernel = tf.Variable(tf.truncated_normal([3, 3, fourth_conv_size, fifth_conv_size], | |
dtype=tf.float32, | |
stddev=1e-1), | |
name="conv5_weights") | |
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding="SAME") | |
bias = tf.Variable(tf.truncated_normal([fifth_conv_size]), name="conv5_bias") | |
conv_with_bias = tf.nn.bias_add(conv, bias) | |
conv5 = tf.nn.relu(conv_with_bias, name="conv5") | |
# Fully Connected Layers | |
fc_size = fifth_conv_size | |
conv5 = tf.layers.flatten(conv5) # tf.flatten | |
weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc1_weights") | |
bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc1_bias") | |
fc1 = tf.matmul(conv5, weights) + bias | |
fc1 = tf.nn.relu(fc1, name="fc1") | |
fc1 = tf.nn.dropout(fc1, dropout) | |
weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc2_weights") | |
bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc2_bias") | |
fc2 = tf.matmul(fc1, weights) + bias | |
fc2 = tf.nn.relu(fc2, name="fc2") | |
fc2 = tf.nn.dropout(fc2, dropout) | |
weights = tf.Variable(tf.zeros([fc_size, n_classes]), name="output_weight") | |
bias = tf.Variable(tf.truncated_normal([n_classes]), name="output_bias") | |
out = tf.matmul(fc2, weights) + bias |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment