Created
          August 13, 2018 20:02 
        
      - 
      
 - 
        
Save joeyism/e53eddea0534f7c523533f5b3e9cc393 to your computer and use it in GitHub Desktop.  
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import tensorflow as tf | |
| n_classes = 10 | |
| image_size = 32 | |
| dropout = tf.placeholder(tf.float32, name="dropout_rate") | |
| input_images = tf.placeholder(tf.float32, | |
| shape=[None, image_size, image_size, 3], | |
| name="input_images") | |
| # First CONV layer | |
| kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96], | |
| dtype=tf.float32, | |
| stddev=1e-1), | |
| name="conv1_weights") | |
| conv = tf.nn.conv2d(input_images, kernel, [1, 4, 4, 1], padding="SAME") | |
| bias = tf.Variable(tf.truncated_normal([96])) | |
| conv_with_bias = tf.nn.bias_add(conv, bias) | |
| conv1 = tf.nn.relu(conv_with_bias, name="conv1") | |
| lrn1 = tf.nn.lrn(conv1, | |
| alpha=1e-4, | |
| beta=0.75, | |
| depth_radius=2, | |
| bias=2.0) | |
| pooled_conv1 = tf.nn.max_pool(lrn1, | |
| ksize=[1, 3, 3, 1], | |
| strides=[1, 2, 2, 1], | |
| padding="SAME", | |
| name="pool1") | |
| # Second CONV Layer | |
| kernel = tf.Variable(tf.truncated_normal([5, 5, 96, 256], | |
| dtype=tf.float32, | |
| stddev=1e-1), | |
| name="conv2_weights") | |
| conv = tf.nn.conv2d(pooled_conv1, kernel, [1, 4, 4, 1], padding="SAME") | |
| bias = tf.Variable(tf.truncated_normal([256]), name="conv2_bias") | |
| conv_with_bias = tf.nn.bias_add(conv, bias) | |
| conv2 = tf.nn.relu(conv_with_bias, name="conv2") | |
| lrn2 = tf.nn.lrn(conv2, | |
| alpha=1e-4, | |
| beta=0.75, | |
| depth_radius=2, | |
| bias=2.0) | |
| pooled_conv2 = tf.nn.max_pool(lrn2, | |
| ksize=[1, 3, 3, 1], | |
| strides=[1, 2, 2, 1], | |
| padding="SAME", | |
| name="pool2") | |
| # Third CONV layer | |
| kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 384], | |
| dtype=tf.float32, | |
| stddev=1e-1), | |
| name="conv3_weights") | |
| conv = tf.nn.conv2d(pooled_conv2, kernel, [1, 1, 1, 1], padding="SAME") | |
| bias = tf.Variable(tf.truncated_normal([384]), name="conv3_bias") | |
| conv_with_bias = tf.nn.bias_add(conv, bias) | |
| conv3 = tf.nn.relu(conv_with_bias, name="conv3") | |
| # Fourth CONV layer | |
| kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 384], | |
| dtype=tf.float32, | |
| stddev=1e-1), | |
| name="conv4_weights") | |
| conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME") | |
| bias = tf.Variable(tf.truncated_normal([384]), name="conv4_bias") | |
| conv_with_bias = tf.nn.bias_add(conv, bias) | |
| conv4 = tf.nn.relu(conv_with_bias, name="conv4") | |
| # Fifth CONV Layer | |
| kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], | |
| dtype=tf.float32, | |
| stddev=1e-1), | |
| name="conv5_weights") | |
| conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding="SAME") | |
| bias = tf.Variable(tf.truncated_normal([256]), name="conv5_bias") | |
| conv_with_bias = tf.nn.bias_add(conv, bias) | |
| conv5 = tf.nn.relu(conv_with_bias, name="conv5") | |
| # Fully Connected Layers | |
| fc_size = 256 | |
| conv5 = tf.layers.flatten(conv5) # tf.flatten | |
| weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc1_weights") | |
| bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc1_bias") | |
| fc1 = tf.matmul(conv5, weights) + bias | |
| fc1 = tf.nn.relu(fc1, name="fc1") | |
| weights = tf.Variable(tf.truncated_normal([fc_size, fc_size]), name="fc2_weights") | |
| bias = tf.Variable(tf.truncated_normal([fc_size]), name="fc2_bias") | |
| fc2 = tf.matmul(fc1, weights) + bias | |
| fc2 = tf.nn.relu(fc2, name="fc2") | |
| weights = tf.Variable(tf.zeros([fc_size, n_classes]), name="output_weight") | |
| bias = tf.Variable(tf.truncated_normal([n_classes]), name="output_bias") | |
| out = tf.matmul(fc2, weights) + bias | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment