Last active
July 27, 2017 12:16
-
-
Save joffilyfe/2fe74324746dd6f7116bc3b7c00f6d1f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(lubridate) | |
library(dplyr) | |
set.seed(1000) | |
wssplot <- function(data, nc=15, seed=1000) { | |
wss <- (nrow(data)-1)*sum(apply(data,2,var)) | |
for (i in 2:nc){ | |
set.seed(seed) | |
wss[i] <- sum(kmeans(data, centers=i)$withinss) | |
} | |
plot(1:nc, wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares") | |
} | |
dataset <- read_csv2("data/chik2016.csv") | |
summary(dataset) | |
# Replace NA values to 0 in FEBRE COL | |
dataset <- dataset %>% | |
mutate(FEBRE = ifelse(is.na(FEBRE), 0, FEBRE)) %>% | |
mutate(CEFALEIA = ifelse(is.na(CEFALEIA), 0, CEFALEIA)) %>% | |
mutate(MIALGIA = ifelse(is.na(MIALGIA), 0, MIALGIA)) %>% | |
mutate(EXANTEMA = ifelse(is.na(EXANTEMA), 0, EXANTEMA)) %>% | |
mutate(VOMITO = ifelse(is.na(VOMITO), 0, VOMITO)) %>% | |
mutate(NAUSEA = ifelse(is.na(NAUSEA), 0, NAUSEA)) %>% | |
mutate(DOR_COSTAS = ifelse(is.na(DOR_COSTAS), 0, DOR_COSTAS)) %>% | |
mutate(CONJUNTVIT = ifelse(is.na(CONJUNTVIT), 0, CONJUNTVIT)) %>% | |
mutate(ARTRITE = ifelse(is.na(ARTRITE), 0, ARTRITE)) %>% | |
subset(., !is.na(DT_NASC)) | |
dataset$AGE <- year("2017-07-27") - year(ymd(x$DT_NASC)) | |
# Select columns to try do any clustering action | |
grupo <- dataset %>% select(FEBRE, CEFALEIA, MIALGIA, EXANTEMA, VOMITO, NAUSEA, DOR_COSTAS, CONJUNTVIT, ARTRITE, AGE) | |
ratio_ss <- rep(0, 7) | |
for (k in 1:7) { | |
grupo_km <- kmeans(grupo, k, nstart = 20) | |
ratio_ss[k] <- grupo_km$tot.withinss / grupo_km$totss | |
} | |
plot(ratio_ss, type = "b", xlab = "k") | |
grupo_km <- kmeans(grupo, 2, nstart = 20) | |
plot(grupo$DOR_COSTAS, grupo$VOMITO, col = grupo_km$cluster) | |
filtrados <- grupo %>% | |
filter(., FEBRE > 0) %>% | |
filter(., CEFALEIA > 0) %>% | |
filter(., MIALGIA > 0) | |
ratio_ss <- rep(0, 12) | |
for (k in 1:12) { | |
filtrados_km <- kmeans(filtrados, k, nstart = 20) | |
ratio_ss[k] <- filtrados_km$tot.withinss / filtrados_km$totss | |
} | |
wssplot(filtrados, seed=1000) | |
# Mostra qual a quantidade de grupos seria importante informar ao algoritmo | |
plot(ratio_ss, type = "b", xlab = "k") | |
filtrados_km <- kmeans(filtrados, 6, nstart = 20) | |
filtrados_km | |
plot(filtrados$NAUSEA, filtrados$AGE, col = filtrados_km$cluster) | |
table(filtrados_km$cluster, filtrados$FEBRE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment