Last active
May 11, 2019 08:38
-
-
Save jogeshpi03/19cef8720f36b1c41192b55444751f66 to your computer and use it in GitHub Desktop.
Facebook Data-Mining Using Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import requests | |
import pandas as pd | |
import os, sys | |
token = "" | |
try: | |
token = os.environ['FB_TOKEN'] | |
except: | |
print "Set FB_TOKEN variable" | |
sys.exit(-1) | |
fb_pageid = "100281786832302" | |
postlst = [] | |
url = "https://graph.facebook.com/v2.9/"+fb_pageid+"/posts?limit=100&access_token="+token | |
while(True): | |
posts = requests.get(url) | |
posts_json = posts.json() | |
for x1 in posts_json['data']: | |
postlst.append(x1.get('created_time')) | |
next_page = "" | |
try: | |
next_page = posts_json['paging']['next'] | |
url = next_page | |
except: | |
break | |
if not next_page: break | |
print "Count: %s, Next Page: %s" % ( len(postlst), url) | |
print "\nGenerating CSV File" | |
df = pd.DataFrame({'dates': postlst}) | |
df['dates'] = pd.to_datetime(df['dates']) | |
df['day_of_week'] = df['dates'].dt.weekday_name | |
df['year'] = df['dates'].dt.year | |
df['month'] = df['dates'].dt.month | |
df['count'] = 1 | |
df.to_csv('data.csv') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment