Created
March 28, 2018 09:04
-
-
Save johanburati/a7cc3440e90cfc36cd83a6729b9c5eea to your computer and use it in GitHub Desktop.
gpu.lua
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Max Jaderberg 4/9/13 | |
-- GPU Effectiveness test | |
require 'torch' | |
require 'sys' | |
require 'nn' | |
require 'xlua' | |
cmd = torch.CmdLine() | |
cmd:text() | |
cmd:text('GPU Benchmark. Max Jaderberg.') | |
cmd:text() | |
cmd:text('Options:') | |
cmd:option('-size', 24, 'size of images') | |
cmd:option('-N', 1000, 'number of images') | |
cmd:option('-threads', 2, 'number of threads') | |
cmd:text() | |
opt = cmd:parse(arg or {}) | |
torch.setnumthreads(opt.threads) | |
torch.setdefaulttensortype("torch.FloatTensor") | |
-- Input size | |
sz = opt.size | |
finalsize = (sz - 4)/2 --for a 5x5 filter | |
Ntest = opt.N | |
-- Test input | |
x = torch.rand(Ntest, 3, sz, sz) | |
-- Simple network | |
model = nn.Sequential() | |
model:add(nn.SpatialConvolution(3, 64, 5, 5)) | |
model:add(nn.Tanh()) | |
model:add(nn.SpatialLPPooling(64, 2, 2, 2, 2, 2)) | |
model:add(nn.Reshape(64*finalsize*finalsize)) | |
model:add(nn.Linear(64*finalsize*finalsize, 128)) | |
model:add(nn.Tanh()) | |
model:add(nn.Linear(128, 2)) | |
model:add(nn.Tanh()) | |
criterion = nn.MSECriterion() | |
-- Test ouput | |
y = torch.rand(Ntest, 2) | |
-- Test routine | |
local runtest = function() | |
print('==> Type is '..x:type()) | |
for i = 1,x:size(1) do | |
xlua.progress(i, x:size(1)) | |
local yp = model:forward(x[i]) | |
local err = criterion:forward(yp, y[i]) | |
local df_do = criterion:backward(yp, y[i]) | |
model:backward(x[i], df_do) | |
end | |
end | |
-- GPU TEST | |
require 'cunn' | |
x = x:cuda() | |
y = y:cuda() | |
model:cuda() | |
criterion:cuda() | |
gputime0 = sys.clock() | |
runtest() | |
gputime1 = sys.clock() | |
gputime = gputime1 - gputime0 | |
print('GPU Time: '.. (gputime*1000) .. 'ms') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment