Skip to content

Instantly share code, notes, and snippets.

@john-adeojo
Created April 5, 2023 13:23
Show Gist options
  • Save john-adeojo/74b8ececc8d88e81b648fe774a28b84b to your computer and use it in GitHub Desktop.
Save john-adeojo/74b8ececc8d88e81b648fe774a28b84b to your computer and use it in GitHub Desktop.
import pandas as pd
import numpy as np
from umap import UMAP
from hdbscan import HDBSCAN
import plotly.express as px
import plotly.graph_objects as go
import gower
class ClusterAnalysis:
def __init__(self, dataframe, n_neighbors=15, min_cluster_size=5, min_dist=0.1, cluster_dims=None, export_data=False, weight_factor=1):
self.dataframe = dataframe.copy()
self.n_neighbors = n_neighbors
self.min_cluster_size = min_cluster_size
self.min_dist = min_dist
self.cluster_dims = cluster_dims
self.weight_class = self.dataframe['weight_class'].drop_duplicates().values[0]
self.export_data = export_data
self.weight_factor = weight_factor
def get_binary_columns(self, dataframe):
binary_columns = []
for col in dataframe.columns:
unique_values = dataframe[col].unique()
if len(unique_values) == 2 and sorted(unique_values) == [0, 1]:
binary_columns.append(col)
return binary_columns
def perform_umap(self):
data = self.dataframe[self.cluster_dims]
gower_distance_matrix = gower.gower_matrix(data)
# Identify the binary columns
binary_columns = self.get_binary_columns(data)
# Get the indices of binary columns in 'data'
binary_column_indices = [data.columns.get_loc(col) for col in binary_columns]
for index in binary_column_indices:
gower_distance_matrix[:, index] *= self.weight_factor
gower_distance_matrix[index, :] *= self.weight_factor
# Perform UMAP with the modified Gower distance matrix
reducer = UMAP(n_neighbors=self.n_neighbors, min_dist=self.min_dist, metric='precomputed', random_state=42)
umap_data = reducer.fit_transform(gower_distance_matrix)
self.dataframe['x'] = umap_data[:, 0]
self.dataframe['y'] = umap_data[:, 1]
def perform_hdbscan(self):
np.random.seed(42)
clusterer = HDBSCAN(min_cluster_size=self.min_cluster_size, metric='euclidean')
self.dataframe['cluster'] = clusterer.fit_predict(self.dataframe[['x', 'y']])
self.dataframe['specific_cluster'] = self.dataframe['cluster'].astype(str) + '_' + self.dataframe['weight_class']
if self.export_data == True:
self.dataframe.to_csv(f"C:\\Users\\johna\\anaconda3\\envs\\ufc-env\\ufc_styles\\data\\02_intermediate\\fighter_cluster{ self.weight_class}.csv", index=False)
def plot_scatter(self):
unique_clusters = sorted(self.dataframe['cluster'].unique())
fig = go.Figure()
for cluster in unique_clusters:
cluster_data = self.dataframe[self.dataframe['cluster'] == cluster]
fig.add_trace(go.Scatter(x=cluster_data['x'], y=cluster_data['y'], mode='markers', name='Cluster ' + str(cluster),
marker=dict(size=6, opacity=0.4), hovertext=cluster_data['Fighter_dims'],
text=cluster_data['Fighter_dims'], textposition='top center', textfont=dict(size=10, color='black')))
fig.update_layout(title=f'Fighting Style Clusters: {self.weight_class}', showlegend=True, width=750, height=750)
fig.show()
def run(self):
self.perform_umap()
self.perform_hdbscan()
self.plot_scatter()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment