Skip to content

Instantly share code, notes, and snippets.

@john-adeojo
Created March 30, 2023 23:29
Show Gist options
  • Save john-adeojo/7b22282f62e69141a5d0e69dbe532478 to your computer and use it in GitHub Desktop.
Save john-adeojo/7b22282f62e69141a5d0e69dbe532478 to your computer and use it in GitHub Desktop.
import pandas as pd
import numpy as np
from umap import UMAP
from hdbscan import HDBSCAN
import plotly.express as px
import plotly.graph_objects as go
class ClusterAnalysis:
def __init__(self, dataframe, n_neighbors=15, min_cluster_size=5, min_dist=0.1, metric='euclidean'):
self.dataframe = dataframe.copy()
self.n_neighbors = n_neighbors
self.min_cluster_size = min_cluster_size
self.min_dist = min_dist
self.metric = metric
def perform_umap(self):
reducer = UMAP(n_neighbors=self.n_neighbors, min_dist=self.min_dist, metric=self.metric, random_state=42)
umap_data = reducer.fit_transform(self.dataframe[['favorite_count_pf_mean', 'retweet_count_pf_mean', 'quote_count_pf_mean','reply_count_pf_mean', 'anger', 'joy', 'optimism', 'sadness', 'negative', 'neutral', 'positive']])
self.dataframe['x'] = umap_data[:, 0]
self.dataframe['y'] = umap_data[:, 1]
def perform_hdbscan(self):
np.random.seed(42)
clusterer = HDBSCAN(min_cluster_size=self.min_cluster_size, metric=self.metric)
self.dataframe['cluster'] = clusterer.fit_predict(self.dataframe[['x', 'y']])
def plot_scatter(self):
unique_clusters = sorted(self.dataframe['cluster'].unique())
fig = go.Figure()
for cluster in unique_clusters:
cluster_data = self.dataframe[self.dataframe['cluster'] == cluster]
fig.add_trace(go.Scatter(x=cluster_data['x'], y=cluster_data['y'], mode='markers', name='Cluster ' + str(cluster),
marker=dict(size=6, opacity=0.4), hovertext=cluster_data['name'],
text=cluster_data['name'], textposition='top center', textfont=dict(size=10, color='black')))
fig.update_layout(title='Influence Clusters', showlegend=True, width=750, height=750)
fig.show()
def run(self):
self.perform_umap()
self.perform_hdbscan()
self.plot_scatter()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment