Created
March 30, 2023 23:29
-
-
Save john-adeojo/7b22282f62e69141a5d0e69dbe532478 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
from umap import UMAP | |
from hdbscan import HDBSCAN | |
import plotly.express as px | |
import plotly.graph_objects as go | |
class ClusterAnalysis: | |
def __init__(self, dataframe, n_neighbors=15, min_cluster_size=5, min_dist=0.1, metric='euclidean'): | |
self.dataframe = dataframe.copy() | |
self.n_neighbors = n_neighbors | |
self.min_cluster_size = min_cluster_size | |
self.min_dist = min_dist | |
self.metric = metric | |
def perform_umap(self): | |
reducer = UMAP(n_neighbors=self.n_neighbors, min_dist=self.min_dist, metric=self.metric, random_state=42) | |
umap_data = reducer.fit_transform(self.dataframe[['favorite_count_pf_mean', 'retweet_count_pf_mean', 'quote_count_pf_mean','reply_count_pf_mean', 'anger', 'joy', 'optimism', 'sadness', 'negative', 'neutral', 'positive']]) | |
self.dataframe['x'] = umap_data[:, 0] | |
self.dataframe['y'] = umap_data[:, 1] | |
def perform_hdbscan(self): | |
np.random.seed(42) | |
clusterer = HDBSCAN(min_cluster_size=self.min_cluster_size, metric=self.metric) | |
self.dataframe['cluster'] = clusterer.fit_predict(self.dataframe[['x', 'y']]) | |
def plot_scatter(self): | |
unique_clusters = sorted(self.dataframe['cluster'].unique()) | |
fig = go.Figure() | |
for cluster in unique_clusters: | |
cluster_data = self.dataframe[self.dataframe['cluster'] == cluster] | |
fig.add_trace(go.Scatter(x=cluster_data['x'], y=cluster_data['y'], mode='markers', name='Cluster ' + str(cluster), | |
marker=dict(size=6, opacity=0.4), hovertext=cluster_data['name'], | |
text=cluster_data['name'], textposition='top center', textfont=dict(size=10, color='black'))) | |
fig.update_layout(title='Influence Clusters', showlegend=True, width=750, height=750) | |
fig.show() | |
def run(self): | |
self.perform_umap() | |
self.perform_hdbscan() | |
self.plot_scatter() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment