-
-
Save johnDorian/5561272 to your computer and use it in GitHub Desktop.
### A piper diagram based on the ternary plot example here: http://srmulcahy.github.io/2012/12/04/ternary-plots-r.html | |
### This was written quickly, and most likely contains bugs - I advise you to check it first. | |
### Jason Lessels [email protected] | |
### This now consists of two functions. transform_piper_data transforms the data to match | |
### the coordinates of the piper diagram. ggplot_piper does all of the background. | |
transform_piper_data <- function(Mg, Ca, Cl,SO4, name=NULL){ | |
if(is.null(name)){ | |
name = rep(1:length(Mg),3) | |
} else { | |
name = rep(name,3) | |
} | |
y1 <- Mg * 0.86603 | |
x1 <- 100*(1-(Ca/100) - (Mg/200)) | |
y2 <- SO4 * 0.86603 | |
x2 <-120+(100*Cl/100 + 0.5 * 100*SO4/100) | |
new_point <- function(x1, x2, y1, y2, grad=1.73206){ | |
b1 <- y1-(grad*x1) | |
b2 <- y2-(-grad*x2) | |
M <- matrix(c(grad, -grad, -1,-1), ncol=2) | |
intercepts <- as.matrix(c(b1,b2)) | |
t_mat <- -solve(M) %*% intercepts | |
data.frame(x=t_mat[1,1], y=t_mat[2,1]) | |
} | |
np_list <- lapply(1:length(x1), function(i) new_point(x1[i], x2[i], y1[i], y2[i])) | |
npoints <- do.call("rbind",np_list) | |
data.frame(observation=name,x=c(x1, x2, npoints$x), y=c(y=y1, y2, npoints$y)) | |
} | |
ggplot_piper <- function() { | |
library(ggplot2) | |
grid1p1 <<- data.frame(x1 = c(20,40,60,80), x2= c(10,20,30,40),y1 = c(0,0,0,0), y2 = c(17.3206,34.6412,51.9618, 69.2824)) | |
grid1p2 <<- data.frame(x1 = c(20,40,60,80), x2= c(60,70,80,90),y1 = c(0,0,0,0), y2 = c(69.2824, 51.9618,34.6412,17.3206)) | |
grid1p3 <<- data.frame(x1 = c(10,20,30,40), x2= c(90,80,70,60),y1 = c(17.3206,34.6412,51.9618, 69.2824), y2 = c(17.3206,34.6412,51.9618, 69.2824)) | |
grid2p1 <<- grid1p1 | |
grid2p1$x1 <- grid2p1$x1+120 | |
grid2p1$x2 <- grid2p1$x2+120 | |
grid2p2 <<- grid1p2 | |
grid2p2$x1 <- grid2p2$x1+120 | |
grid2p2$x2 <- grid2p2$x2+120 | |
grid2p3 <<- grid1p3 | |
grid2p3$x1 <- grid2p3$x1+120 | |
grid2p3$x2 <- grid2p3$x2+120 | |
grid3p1 <<- data.frame(x1=c(100,90, 80, 70),y1=c(34.6412, 51.9618, 69.2824, 86.603), x2=c(150, 140, 130, 120), y2=c(121.2442,138.5648,155.8854,173.2060)) | |
grid3p2 <<- data.frame(x1=c(70, 80, 90, 100),y1=c(121.2442,138.5648,155.8854,173.2060), x2=c(120, 130, 140, 150), y2=c(34.6412, 51.9618, 69.2824, 86.603)) | |
p <- ggplot() + | |
## left hand ternary plot | |
geom_segment(aes(x=0,y=0, xend=100, yend=0)) + | |
geom_segment(aes(x=0,y=0, xend=50, yend=86.603)) + | |
geom_segment(aes(x=50,y=86.603, xend=100, yend=0)) + | |
## right hand ternary plot | |
geom_segment(aes(x=120,y=0, xend=220, yend=0)) + | |
geom_segment(aes(x=120,y=0, xend=170, yend=86.603)) + | |
geom_segment(aes(x=170,y=86.603, xend=220, yend=0)) + | |
## Upper diamond | |
geom_segment(aes(x=110,y=190.5266, xend=60, yend=103.9236)) + | |
geom_segment(aes(x=110,y=190.5266, xend=160, yend=103.9236)) + | |
geom_segment(aes(x=110,y=17.3206, xend=160, yend=103.9236)) + | |
geom_segment(aes(x=110,y=17.3206, xend=60, yend=103.9236)) + | |
## Add grid lines to the plots | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid1p1, linetype = "dashed", size = 0.25, colour = "grey50") + | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid1p2, linetype = "dashed", size = 0.25, colour = "grey50") + | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid1p3, linetype = "dashed", size = 0.25, colour = "grey50") + | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid2p1, linetype = "dashed", size = 0.25, colour = "grey50") + | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid2p2, linetype = "dashed", size = 0.25, colour = "grey50") + | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid2p3, linetype = "dashed", size = 0.25, colour = "grey50") + | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid3p1, linetype = "dashed", size = 0.25, colour = "grey50") + | |
geom_segment(aes(x=x1, y=y1, yend=y2, xend=x2), data=grid3p2, linetype = "dashed", size = 0.25, colour = "grey50") + | |
### Labels and grid values | |
#geom_text(aes(50,-10, label="Ca^2"), parse=T, size=4) + # Commented out, as parse=TRUE can cause issues | |
geom_text(aes(c(20,40,60,80),c(-5,-5,-5,-5), label=c(80, 60, 40, 20)), size=3) + | |
geom_text(aes(c(35,25,15,5),grid1p2$y2, label=c(80, 60, 40, 20)), size=3) + | |
geom_text(aes(c(95,85,75,65),grid1p3$y2, label=c(80, 60, 40, 20)), size=3) + | |
# geom_text(aes(17,50, label="Mg^2"), parse=T, angle=60, size=4) + | |
coord_equal(ratio=1)+ | |
geom_text(aes(17,50, label="Mg^2"), angle=60, size=4, parse=TRUE) + | |
geom_text(aes(82.5,50, label="Na + K"), angle=-60, size=4) + | |
geom_text(aes(50,-10, label="Ca^2"), size=4, parse=TRUE) + | |
geom_text(aes(170,-10, label="Cl^-phantom()"), size=4, parse=TRUE) + | |
geom_text(aes(205,50, label="SO^4"), angle=-60, size=4, parse=TRUE) + | |
geom_text(aes(137.5,50, label="Alkalinity~as~HCO^3"), angle=60, size=4, parse=TRUE) + | |
geom_text(aes(72.5,150, label="SO^4~+~Cl^-phantom()"), angle=60, size=4, parse=TRUE) + | |
geom_text(aes(147.5,150, label="Ca^2~+~Mg^2"), angle=-60, size=4, parse=TRUE) + | |
geom_text(aes(c(155,145,135,125),grid2p2$y2, label=c(20, 40, 60, 80)), size=3) + | |
geom_text(aes(c(215,205,195,185),grid2p3$y2, label=c(20, 40, 60, 80)), size=3) + | |
geom_text(aes(c(140,160,180,200),c(-5,-5,-5,-5), label=c(20, 40, 60, 80)), size=3) + | |
geom_text(aes(grid3p1$x1-5,grid3p1$y1, label=c(80, 60, 40, 20)), size=3) + | |
geom_text(aes(grid3p1$x2+5,grid3p1$y2, label=c(20, 40, 60, 80)), size=3) + | |
geom_text(aes(grid3p2$x1-5,grid3p2$y1, label=c(20, 40, 60, 80)), size=3) + | |
geom_text(aes(grid3p2$x2+5,grid3p2$y2, label=c(80, 60, 40, 20)), size=3) + | |
theme_bw() + | |
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), | |
panel.border = element_blank(), axis.ticks = element_blank(), | |
axis.text.x = element_blank(), axis.text.y = element_blank(), | |
axis.title.x = element_blank(), axis.title.y = element_blank()) | |
return(p) | |
} | |
### A plan and simple piper diagram | |
data=as.data.frame(list("Ca"=c(43,10,73,26,32),"Mg"=c(30,50,3,14,12),Cl=c(24,10,12,30,43),"SO4"=c(24,10,12,30,43),"WaterType"=c(2,2,1,2,3)),row.names=c("A","B","C","D","E")) | |
#transform the data into piper based coordinates | |
piper_data <- transform_piper_data(Ca=data$Ca, Mg = data$Mg, Cl=data$Cl, SO4= data$SO4, name=data$WaterType) | |
# The piper function now just plots the background | |
ggplot_piper() | |
# Now points can be added like... | |
ggplot_piper() + geom_point(aes(x,y), data=piper_data) | |
# colouring the points can be done using the observation value. | |
ggplot_piper() + geom_point(aes(x,y, colour=factor(observation)), data=piper_data) | |
# The size can be changed like.. | |
ggplot_piper() + geom_point(aes(x,y, colour=factor(observation)), size=4, data=piper_data) | |
## Change colours and shapes and merging the legends together | |
ggplot_piper() + geom_point(aes(x,y, colour=factor(observation), shape=factor(observation)), size=4, data=piper_data) + | |
scale_colour_manual(name="legend name must be the same", values=c("#999999", "#E69F00", "#56B4E9"), labels=c("Control", "Treatment 1", "Treatment 2")) + | |
scale_shape_manual(name="legend name must be the same", values=c(1,2,3), labels=c("Control", "Treatment 1", "Treatment 2")) |
Hey Jason, I forked your gist to a regular git-hub repo to be able to provide a README with your example plots:
https://github.com/markolipka/ggplot_Piper
Unfortunately, the fork process did not preserve the relation to your gist. Sorry for that, I'm linking to it in the README file.
Thank you very much for the code, Jason.
If anyone wants to color the plot based on major water type/chemistry, run this to create polygons:
##Upper Diamond##
ids <- factor(c("Sodium Bicarbonate", "Sodium Chloride",
"Calcium Bicarbonate", "Calcium Sulfate"))
values <- data.frame(
id = ids,
value = c(1,2,3,4))
positions <- data.frame(
id=rep(ids, each = 4),
x=c(110,85,110,135,
135,110,135,160,
85,60,85,110,
110,85,110,135),
y=c(17.3206,60.6221, 103.9236,60.6221,
60.6221, 103.9236, 147.2251, 103.9236,
60.6221,103.9236,147.2251,103.9236,
103.9236,147.2251,190.5266,147.2251))
polygons <- merge(values, positions)
##Left Ternary Plot##
ids2 <- factor(c("5", "6", "7", "8"))
values2 <- data.frame(
id = ids,
value = c(5,6,7,8))
positions2 <- data.frame(
id=rep(ids2, each = 3),
x=c(50,0,25,
50,25,75,
100,50,75,
75,25,50),
y=c(0,0,43.3015,
0,43.3015,43.3015,
0,0,43.3015,
43.3015,43.3015,86.603))
polygons2 <- merge(values2, positions2)
##Right Ternary Plot##
ids3 <- factor(c("9", "10", "11", "12"))
values3 <- data.frame(
id = ids,
value = c(9,10,11,12))
positions3 <- data.frame(
id=rep(ids2, each = 3),
x=c(170,120,145,
170,145,195,
220,170,195,
195,145,170),
y=c(0,0,43.3015,
0,43.3015,43.3015,
0,0,43.3015,
43.3015,43.3015,86.603))
polygons3 <- merge(values3, positions3)
Then, add a line for each 'plot' (upper, left, right) within the ggplot_piper function by Jason, for example:
left hand ternary plot:
geom_polygon(data=polygons2, aes(x=x,y=y,fill=id,group=id)) +
geom_segment(aes(x=0,y=0, xend=100, yend=0)) …
Thanks for the nice script! Some minor improvements on the sub-and superscripts on the axes are necessary though.
@bmbagley: Your discrepancys might come from discrepancies in your units. Note that input data need to be percent of meq/l. The hydrogeo package has a function to convert meq/l to percent (toPercent), but you need to convert to meq/l before by yourself.