Last active
October 9, 2019 08:44
-
-
Save johnchandlerburnham/2eb08f49860b66b38efa1517ac2961db to your computer and use it in GitHub Desktop.
Univalence in Formality
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// based on https://arxiv.org/pdf/1803.02294.pdf | |
import Relation.Equality | |
K : { X : Type} -> Type | |
{x : X, y : X, p : Path(X,x,y), q : Path(X,x,y)} -> Path(Path(X,x,y),p,q) | |
J : | |
{ X : Type | |
, x : X | |
, y : X | |
, A : {X : Type, x : X, y : X, p : Path(X,x,y)} -> Type | |
, f : {x : X} -> A(X,x,x,reflect(~X,~x)) | |
, p : Path(X,x,y) | |
} -> A(X,x,y,p) | |
(%p)(~A(X,x),f(x)) | |
SingletonType : {X : Type, x : X} -> Type | |
[y : X, Path(X,y,x)] | |
eta : {X : Type, x : X} -> SingletonType(X,x) | |
[x, reflect(~X,~x)] | |
A : {X : Type, y : X, x : X, p : Path(X,y,x)} -> Type | |
Path(SingletonType(X,x),eta(X,x),[y, p]) | |
f : {X : Type, x : X} -> A(X,x,x,reflect(~X,~x)) | |
reflect(~SingletonType(X,x),~eta(X,x)) | |
phi : { X : Type, y : X , x : X , p : Path(X,y,x) } | |
-> Path(SingletonType(X,x), eta(X,x), [y, p]) | |
J(X,y,x,A,f(type(X)),p) | |
// This requires a proof that `[y,p] == s`, which currently seems | |
// not possible with the current `get` primitive. Here is a proposed change which would allow this. | |
// | |
//g : {X : Type, x : X, s : SingletonType(X,x)} | |
// -> Path(SingletonType(X,x),eta(X,x),s) | |
// get e : [y,p] is s | |
// phi(X,y,x,p) :: rewrite t in Path(SingletonType(X,x), eta(X,x), t) with e | |
// | |
//split_join : {A : Type, B : Type, a : [A,B]} -> [fst(a), snd(a)] == a | |
// get [l,r] = a with e | |
// refl(~a) :: rewrite t in t == a with sym(~e) | |
h : { X : Type | |
, x : X | |
} -> let SX = SingletonType(X,x); [c : SX, {s : SX} -> Path(SX, c, s)] | |
[eta(X,x), ?g] | |
IsSingleton : {X : Type} -> Type | |
[c : X, {x : X} -> Path(X,c,x)] | |
SingletonTypeIsSingleton : | |
{ X : Type | |
, x : X | |
} -> IsSingleton(SingletonType(X,x)) | |
[eta(X,x), ?g] | |
Fiber : {X : Type, Y : Type, f : X -> Y, y : Y} -> Type | |
[x : X, Path(Y, f(x), y)] | |
IsEquiv : {X : Type, Y : Type, f : X -> Y} -> Type | |
{y : Y} -> IsSingleton(Fiber(X,Y,f,y)) | |
Equiv : {X : Type, Y : Type} -> Type | |
[f : X -> Y, IsEquiv(X,Y,f)] | |
id : {X : Type, x : X} -> X; x | |
idIsEquiv : {X : Type} -> IsEquiv(X,X,id(X)) | |
{y} SingletonTypeIsSingleton(X,y) | |
IdToEq : {X : Type, Y : Type, p : Path(Type,X,Y)} -> Eq(Type,X,Y) | |
Path_to_Eq(~Type, ~X,~Y,p) | |
isUnivalent : Type | |
{X : Type, Y : Type} -> IsEquiv(Path(Type,X,Y),Eq(Type,X,Y),IdToEq(X,Y)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment