Last active
          October 9, 2019 08:44 
        
      - 
      
- 
        Save johnchandlerburnham/2eb08f49860b66b38efa1517ac2961db to your computer and use it in GitHub Desktop. 
    Univalence in Formality
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | // based on https://arxiv.org/pdf/1803.02294.pdf | |
| import Relation.Equality | |
| K : { X : Type} -> Type | |
| {x : X, y : X, p : Path(X,x,y), q : Path(X,x,y)} -> Path(Path(X,x,y),p,q) | |
| J : | |
| { X : Type | |
| , x : X | |
| , y : X | |
| , A : {X : Type, x : X, y : X, p : Path(X,x,y)} -> Type | |
| , f : {x : X} -> A(X,x,x,reflect(~X,~x)) | |
| , p : Path(X,x,y) | |
| } -> A(X,x,y,p) | |
| (%p)(~A(X,x),f(x)) | |
| SingletonType : {X : Type, x : X} -> Type | |
| [y : X, Path(X,y,x)] | |
| eta : {X : Type, x : X} -> SingletonType(X,x) | |
| [x, reflect(~X,~x)] | |
| A : {X : Type, y : X, x : X, p : Path(X,y,x)} -> Type | |
| Path(SingletonType(X,x),eta(X,x),[y, p]) | |
| f : {X : Type, x : X} -> A(X,x,x,reflect(~X,~x)) | |
| reflect(~SingletonType(X,x),~eta(X,x)) | |
| phi : { X : Type, y : X , x : X , p : Path(X,y,x) } | |
| -> Path(SingletonType(X,x), eta(X,x), [y, p]) | |
| J(X,y,x,A,f(type(X)),p) | |
| // This requires a proof that `[y,p] == s`, which currently seems | |
| // not possible with the current `get` primitive. Here is a proposed change which would allow this. | |
| // | |
| //g : {X : Type, x : X, s : SingletonType(X,x)} | |
| // -> Path(SingletonType(X,x),eta(X,x),s) | |
| // get e : [y,p] is s | |
| // phi(X,y,x,p) :: rewrite t in Path(SingletonType(X,x), eta(X,x), t) with e | |
| // | |
| //split_join : {A : Type, B : Type, a : [A,B]} -> [fst(a), snd(a)] == a | |
| // get [l,r] = a with e | |
| // refl(~a) :: rewrite t in t == a with sym(~e) | |
| h : { X : Type | |
| , x : X | |
| } -> let SX = SingletonType(X,x); [c : SX, {s : SX} -> Path(SX, c, s)] | |
| [eta(X,x), ?g] | |
| IsSingleton : {X : Type} -> Type | |
| [c : X, {x : X} -> Path(X,c,x)] | |
| SingletonTypeIsSingleton : | |
| { X : Type | |
| , x : X | |
| } -> IsSingleton(SingletonType(X,x)) | |
| [eta(X,x), ?g] | |
| Fiber : {X : Type, Y : Type, f : X -> Y, y : Y} -> Type | |
| [x : X, Path(Y, f(x), y)] | |
| IsEquiv : {X : Type, Y : Type, f : X -> Y} -> Type | |
| {y : Y} -> IsSingleton(Fiber(X,Y,f,y)) | |
| Equiv : {X : Type, Y : Type} -> Type | |
| [f : X -> Y, IsEquiv(X,Y,f)] | |
| id : {X : Type, x : X} -> X; x | |
| idIsEquiv : {X : Type} -> IsEquiv(X,X,id(X)) | |
| {y} SingletonTypeIsSingleton(X,y) | |
| IdToEq : {X : Type, Y : Type, p : Path(Type,X,Y)} -> Eq(Type,X,Y) | |
| Path_to_Eq(~Type, ~X,~Y,p) | |
| isUnivalent : Type | |
| {X : Type, Y : Type} -> IsEquiv(Path(Type,X,Y),Eq(Type,X,Y),IdToEq(X,Y)) | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment