Created
June 3, 2020 23:56
-
-
Save johnchandlerburnham/e35dec10bd8a5b7e512aa62e985d934e to your computer and use it in GitHub Desktop.
Recursive Matrix definition
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Standard construction of Matrix based on Vector | |
//T Matrix <A: Type> ~ (rows: Nat, cols: Nat) | |
//| matrix<rows:Nat,cols:Nat>(vecs: Vector(Vector(A,cols),rows)) ~ (rows,cols); | |
Matrix(A: Type, n: Nat, m: Nat) : Type | |
matrix<P: (n: Nat) -> (m: Nat) -> Matrix(A,n,m) -> Type> -> | |
(znil: P(Nat.0,Nat.0,Matrix.znil<A>)) -> | |
(rnil: P(Nat.1,Nat.0, Matrix.rnil<A>)) -> | |
(cnil: P(Nat.0,Nat.1, Matrix.cnil<A>)) -> | |
(cell: (x : A) -> P(Nat.1,Nat.1, Matrix.cell<A>(x))) -> | |
(cols: <n: Nat> -> <a: Nat> -> <b: Nat> -> | |
(x: Matrix(A,n,a)) -> (y: Matrix(A,n,b)) -> | |
P(n,Nat.add(a,b),Matrix.cols<A,n,a,b>(x,y))) -> | |
(rows: <m: Nat> -> <a: Nat> -> <b: Nat> -> | |
(x: Matrix(A,a,m)) -> (y: Matrix(A,b,m)) -> | |
P(Nat.add(a,b),m,Matrix.rows<A,m,a,b>(x,y))) -> | |
P(n,m,matrix) | |
// the 0x0 empty matrix | |
Matrix.znil<A: Type> : Matrix(A,Nat.0,Nat.0) | |
<P> (znil) (rnil) (cnil) (cell) (cols) (rows) znil | |
// an empty row, needed because all n x 0 matrices are also empty, but not constructible from znil alone | |
Matrix.rnil<A: Type> : Matrix(A,Nat.1,Nat.0) | |
<P> (znil) (rnil) (cnil) (cell) (cols) (rows) rnil | |
// empty column | |
Matrix.cnil<A: Type> : Matrix(A,Nat.0,Nat.1) | |
<P> (znil) (rnil) (cnil) (cell) (cols) (rows) cnil | |
// promote value to a 1x1 matrix | |
Matrix.cell<A: Type>(x: A): Matrix(A,Nat.1,Nat.1) | |
<P> (znil) (rnil) (cnil) | |
(cell) (cols) (rows) cell(x) | |
// join matrices by columns | |
Matrix.cols<A: Type, n: Nat, a: Nat, b: Nat>(x: Matrix(A,n,a), y: Matrix(A,n,b)) | |
: Matrix(A,n,Nat.add(a,b)) | |
<P> (znil) (rnil) (cnil) | |
(cell) (cols) (rows) cols<n,a,b>(x,y) | |
// join matrices by rows | |
Matrix.rows<A: Type, m: Nat, a: Nat, b: Nat>(x: Matrix(A,a,m), y: Matrix(A,b,m)) | |
: Matrix(A,Nat.add(a,b),m) | |
<P> (znil) (rnil) (cnil) | |
(cell) (cols) (rows) rows<m,a,b>(x,y) | |
// notation convention: | |
// , = cols, + = rows, | | = cell | |
// |1,2| | |
Matrix.test1: Matrix(Nat,Nat.1,Nat.2) | |
Matrix.cols<Nat,Nat.1,Nat.1,Nat.1>(Matrix.cell<Nat>(Nat.1), Matrix.cell<Nat>(Nat.2)) | |
// |3,4| | |
Matrix.test2: Matrix(Nat,Nat.1,Nat.2) | |
Matrix.cols<Nat,Nat.1,Nat.1,Nat.1>(Matrix.cell<Nat>(Nat.3), Matrix.cell<Nat>(Nat.4)) | |
// |1| + |3| | |
Matrix.test3: Matrix(Nat,Nat.2,Nat.1) | |
Matrix.rows<Nat,Nat.1,Nat.1,Nat.1>(Matrix.cell<Nat>(Nat.1), Matrix.cell<Nat>(Nat.3)) | |
// |2| + |4| | |
Matrix.test4: Matrix(Nat,Nat.2,Nat.1) | |
Matrix.rows<Nat,Nat.1,Nat.1,Nat.1>(Matrix.cell<Nat>(Nat.2), Matrix.cell<Nat>(Nat.4)) | |
// | 1 2 | | |
// | 3 4 | = |1| + |3|, |2| + |4| | |
Matrix.test5: Matrix(Nat,Nat.2,Nat.2) | |
Matrix.cols<Nat,Nat.2,Nat.1,Nat.1>(Matrix.test3,Matrix.test4) | |
// | 1 2 | | |
// | 3 4 | = |1,2| + |3,4| | |
Matrix.test6: Matrix(Nat,Nat.2,Nat.2) | |
Matrix.rows<Nat,Nat.2,Nat.1,Nat.1>(Matrix.test1,Matrix.test2) | |
// Unfortunately the order of joins matters, since we don't reduce matrices to canonical forms. | |
// Next step could be using smart constructors. | |
//Matrix.eq1: Equal(Matrix(Nat,Nat.2,Nat.2),Matrix.test5,Matrix.test6) | |
// Equal.to<Matrix(Nat,Nat.2,Nat.2),Matrix.test5> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment