Skip to content

Instantly share code, notes, and snippets.

View johnchandlerburnham's full-sized avatar
💭
Λ∀

John Chandler Burnham johnchandlerburnham

💭
Λ∀
View GitHub Profile
@johnchandlerburnham
johnchandlerburnham / contract.ya
Created June 22, 2021 13:42
A sketch of smart contracts as dependent records in Yatima
package example_contract
open introit
open contract
lang contract
where
// pure datatypes are defined outside of contracts
data SimpleToken {
value: Integer,
mintedBy: Address,
@johnchandlerburnham
johnchandlerburnham / Wau.hs
Last active May 30, 2021 14:53
system wau preview
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE MultiWayIf #-}
module Wau where
import Data.Map (Map)
import qualified Data.Map as M
import Data.Maybe (isJust)
import Data.Set (Set)
import qualified Data.Set as Set
import Data.STRef
@johnchandlerburnham
johnchandlerburnham / W.fm
Last active June 23, 2020 16:18
W types in Formality
W(A : Type, B : A -> Type) : Type
w<P : W(A,B) -> Type> ->
(sup : (x: A, f: B(x) -> W(A,B)) -> P(W.sup<A,B>(x,f))) ->
P(w)
W.sup<A: Type, B: A -> Type>(x: A, f: B(x) -> W(A,B)) : W(A,B)
<P> (sup) sup(x,f)
T Two
| t0;
@johnchandlerburnham
johnchandlerburnham / ScopeSearch.md
Last active June 18, 2020 19:07
Searching with first order functions

We start with a scope (list of names and types n : T) and a specific type A as our goal.

Initial Scope:

f : C -> B
g : D -> B -> A
h : C
i : D
@johnchandlerburnham
johnchandlerburnham / Matrix.fm
Created June 3, 2020 23:56
Recursive Matrix definition
// Standard construction of Matrix based on Vector
//T Matrix <A: Type> ~ (rows: Nat, cols: Nat)
//| matrix<rows:Nat,cols:Nat>(vecs: Vector(Vector(A,cols),rows)) ~ (rows,cols);
Matrix(A: Type, n: Nat, m: Nat) : Type
matrix<P: (n: Nat) -> (m: Nat) -> Matrix(A,n,m) -> Type> ->
(znil: P(Nat.0,Nat.0,Matrix.znil<A>)) ->
(rnil: P(Nat.1,Nat.0, Matrix.rnil<A>)) ->
(cnil: P(Nat.0,Nat.1, Matrix.cnil<A>)) ->
(cell: (x : A) -> P(Nat.1,Nat.1, Matrix.cell<A>(x))) ->
@johnchandlerburnham
johnchandlerburnham / Path.fm
Created May 28, 2020 22:27
Path involution, connection
I: Type
i<P: (i:I) -> Type> ->
(I0: P(I.0)) ->
(I1: P(I.1)) ->
(IE: Path(P, I0, I1)) ->
P(i)
I.0: I
<P> (i0) (i1) (ie) i0
@johnchandlerburnham
johnchandlerburnham / Funext.fmc
Last active May 7, 2020 03:02
Functional extionality in Formality (almost)
// To type-check, install npm:
// $ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh | bash
// $ nvm install 13.10.1
//
// Then install Formality-Core:
// $ npm i -g formality-core
//
// Then download this file:
// $ curl https://gist.githubusercontent.com/MaiaVictor/28e3332c19fbd80747a0dceb33896b6b/raw/ae8d798225d2e6cc600e158f27d1b83ff384c262/intervals_with_self_types.fmc.c >> main.fmc
//
@johnchandlerburnham
johnchandlerburnham / Arcsec.fmc
Created April 30, 2020 00:11
A refactored Parsec
Arcsec : (S : Type) -> (E : Type) -> (A: Type) -> Type
(S) (E) (A)
<B : Type> ->
Parsec.State(S)(E) ->
(Bool -> Parsec.State(S)(E) -> Either(Parsec.Error(E))(A) -> B) ->
B
Arcsec.Reply : Type -> Type -> Type -> Type
(S) (E) (A)
arcsec_reply<P: Arcsec.Reply(S)(E)(A) -> Type> ->
@johnchandlerburnham
johnchandlerburnham / ATaxonomyOfSelfTypes.md
Last active August 15, 2024 12:26
A Taxonomy of Self Types

A Taxonomy of Self-Types

Part I: Introduction to Self-Types

Datatypes in the Formality programming language are built out of an unusual structure: the self-type. Roughly speaking, a self-type is a type that can depend or be a proposition on it's own value. For instance, the consider the 2 constructor datatype Bool:

@johnchandlerburnham
johnchandlerburnham / Parse.test.fmc.js
Last active April 23, 2020 00:33
Compiling a parser to JavaScript
// Parse.test : String
// Parse.parse<String>
// | Parse.tokens("a");
// | "a";
module.exports = (function (){
var F64 = new Float64Array(1);
var U32 = new Uint32Array(F64.buffer);
var F64_get = (x,i)=>((F64[0]=x),(i<32?(U32[0]>>>i)&1:(U32[1]>>>(i-32)&1)));
var F64_set = (x,i)=>((F64[0]=x),(i<32?(U32[0]=U32[0]|(1<<i)):(U32[1]=U32[1]|(1<<(i-32)))),F64[0]);