Created
June 1, 2011 20:16
-
-
Save johncolby/1003205 to your computer and use it in GitHub Desktop.
An example showing how to plot longitudinal data in R using base graphics and ggplot2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(plyr) | |
library(ggplot2) | |
# Simulate data | |
numSubs = 40 | |
x = runif(numSubs, 0, 30) | |
x = c(x, x + abs(rnorm(numSubs, 2))) | |
y = 2 + x - 0.02*x^2 + rnorm(2*numSubs, 0, 1) | |
data = data.frame(ID = 1:numSubs, Age = x, FA = y, Time = factor(rep(c(1,2), each=numSubs)), Gender = sample(c('Male', 'Female'), numSubs, replace=T)) | |
# Fit quadratic model | |
quad.fit = lm(FA ~ Age + I(Age^2), data=data) | |
pred.ages = with(data, data.frame(Age = seq(min(Age), max(Age), length.out=100))) | |
quad.pred = pred.ages | |
quad.pred$FA = predict(quad.fit, quad.pred) | |
# Fit exponential model | |
exp.fit = nls(FA ~ SSasymp(Age, Asym, R0, lrc), data=data) | |
exp.pred = pred.ages | |
exp.pred$FA = predict(exp.fit, exp.pred) | |
# Plot with base graphics | |
dev.new(width=5, height=5) | |
colorpicks = c('pink', 'skyblue') | |
with(data, plot(Age, FA, pch=c(1,19)[Time], col=colorpicks[as.numeric(Gender)], bty='l', main='Longitudinal example', xlab='Age', ylab='FA')) | |
d_ply(data, 'ID', function(x) lines(x$Age, x$FA, lty=3, col='#666666')) | |
lines(quad.pred) | |
lines(exp.pred, lty=2) | |
legend('bottomright', bty='n', col=c('black', 'black', colorpicks), pch=c(1,19,19,19), c('Time 1', 'Time 2', 'Female', 'Male')) | |
# Plot with ggplot2 | |
dev.new(width=5, height=4) | |
p = ggplot(data, aes(x=Age, y=FA)) + | |
geom_point(aes(color=Gender, shape=Time)) + | |
geom_line(aes(group=ID), alpha=0.3, linetype=3) + | |
geom_smooth(aes(group=1), color='black', method='lm', formula=y~x+I(x^2)) + | |
geom_smooth(aes(group=1), color='black', linetype=2, method='nls', formula=y~SSasymp(x, Asym, R0, lrc), se=F) + | |
scale_color_manual(values=colorpicks) + | |
scale_shape_manual(values=c(1,19)) + | |
opts(title='Longitudinal example') | |
p | |
# Facets with ggplot2 | |
dev.new(width=8, height=4) | |
(p = p + facet_grid(facets=.~Gender)) | |
# For more complex summary geoms, and other arbitrary annotations, the plyr package can be used to put together custom data frames with the info needed for plotting | |
ExpFit <- function(df) { | |
fit = nls(FA ~ SSasymp(Age, Asym, R0, lrc), data=df) | |
pred = with(df, data.frame(Age = seq(min(Age), max(Age), length.out=100))) | |
pred$FA = predict(fit, pred) | |
cbind(pred, t(coefficients(fit)), xpos=range(df$Age)[2], ypos=range(df$FA)[1]) | |
} | |
exp.fits = ddply(data, 'Gender', ExpFit) | |
dev.new(width=8, height=4) | |
p + geom_text(aes(group=1, x=max(xpos), y=min(ypos), label=paste('list(FA[infinity]==', format(Asym, dig=4), ',FA[0]==', format(R0, dig=4), ',tau==', format(exp(lrc), dig=4), ')')), data=exp.fits[!duplicated(exp.fits$Asym),], parse=T, hjust=1, vjust=0, size=3.5) | |
# Or as an equation... | |
dev.new(width=8, height=4) | |
p + geom_text(aes(group=1, x=max(xpos), y=min(ypos), label=paste('FA==', format(Asym, dig=4), format(R0-Asym, dig=4), '*italic(e)^{-', format(exp(lrc), dig=4), '*Age}')), data=exp.fits[!duplicated(exp.fits$Asym),], parse=T, hjust=1, vjust=0, size=3.5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
See: http://www.colbyimaging.com/wiki/statistics/longitudinal-data