Created
October 26, 2011 18:22
-
-
Save johncolby/1317248 to your computer and use it in GitHub Desktop.
An example of how each column in a data frame could be residualized for some covariates
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Download example data from: https://github.com/johncolby/SVM-RFE/zipball/master | |
setwd('/path/to/SVM-RFE/') # Change this to your setup | |
load('demo/input.Rdata') | |
data = input[, 2:3] | |
input = input[, -(1:3)] | |
# Function to residualize a vector x for the covariates in data | |
residualize <- function(x, fun=x~., data) { | |
data = cbind(x=x, data) | |
lm(fun, data=data)$resid | |
} | |
# Apply our residualize function to each column of input | |
input = colwise(residualize)(input, data=data) | |
################################################################################ | |
# Modification for test data | |
load('demo/input.Rdata') | |
# Setup training data | |
input.train = input[1:100, ] | |
data.train = input.train[, 2:3] | |
input.train = input.train[, -(1:3)] | |
# Setup test data | |
input.test = input[101:nrow(input), ] | |
data.test = input.test[, 2:3] | |
input.test = input.test[, -(1:3)] | |
# Modified residualize function to residualize test data based on model fit to | |
# training data only | |
residualizeTest <- function(x, fun=x~., data, x.new, data.new) { | |
data = cbind(x=x, data) | |
fit = lm(fun, data=data) | |
data.new = cbind(x=x.new, data.new) | |
pred = predict(fit, data.new) | |
x.new - pred | |
} | |
# Apply the function to each column in our test data | |
# (more complicated now so can't simply use colwise) | |
input.test = sapply(1:ncol(input.test), function(x) residualizeTest(input.train[,x], data=data.train, x.new=input.test[,x], data.new=data.test)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment