-
-
Save johnhw/dfc7b8b8519aac530ac97da226c17bd5 to your computer and use it in GitHub Desktop.
### JHW 2018 | |
import numpy as np | |
import umap | |
# This code from the excellent module at: | |
# https://stackoverflow.com/questions/4643647/fast-prime-factorization-module | |
import random | |
_known_factors = {} | |
totients = {} | |
def primesbelow(N): | |
# http://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188 | |
#""" Input N>=6, Returns a list of primes, 2 <= p < N """ | |
correction = N % 6 > 1 | |
N = {0:N, 1:N-1, 2:N+4, 3:N+3, 4:N+2, 5:N+1}[N%6] | |
sieve = [True] * (N // 3) | |
sieve[0] = False | |
for i in range(int(N ** .5) // 3 + 1): | |
if sieve[i]: | |
k = (3 * i + 1) | 1 | |
sieve[k*k // 3::2*k] = [False] * ((N//6 - (k*k)//6 - 1)//k + 1) | |
sieve[(k*k + 4*k - 2*k*(i%2)) // 3::2*k] = [False] * ((N // 6 - (k*k + 4*k - 2*k*(i%2))//6 - 1) // k + 1) | |
return [2, 3] + [(3 * i + 1) | 1 for i in range(1, N//3 - correction) if sieve[i]] | |
smallprimeset = set(primesbelow(1000000)) | |
_smallprimeset = 1000000 | |
smallprimes = primesbelow(10000000) | |
prime_ix = {p:i for i,p in enumerate(smallprimes)} | |
def isprime(n, precision=7): | |
# http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time | |
if n < 1: | |
raise ValueError("Out of bounds, first argument must be > 0") | |
elif n <= 3: | |
return n >= 2 | |
elif n % 2 == 0: | |
return False | |
elif n < _smallprimeset: | |
return n in smallprimeset | |
d = n - 1 | |
s = 0 | |
while d % 2 == 0: | |
d //= 2 | |
s += 1 | |
for repeat in range(precision): | |
a = random.randrange(2, n - 2) | |
x = pow(a, d, n) | |
if x == 1 or x == n - 1: continue | |
for r in range(s - 1): | |
x = pow(x, 2, n) | |
if x == 1: return False | |
if x == n - 1: break | |
else: return False | |
return True | |
# https://comeoncodeon.wordpress.com/2010/09/18/pollard-rho-brent-integer-factorization/ | |
def pollard_brent(n): | |
if n % 2 == 0: return 2 | |
if n % 3 == 0: return 3 | |
y, c, m = random.randint(1, n-1), random.randint(1, n-1), random.randint(1, n-1) | |
g, r, q = 1, 1, 1 | |
while g == 1: | |
x = y | |
for i in range(r): | |
y = (pow(y, 2, n) + c) % n | |
k = 0 | |
while k < r and g==1: | |
ys = y | |
for i in range(min(m, r-k)): | |
y = (pow(y, 2, n) + c) % n | |
q = q * abs(x-y) % n | |
g = gcd(q, n) | |
k += m | |
r *= 2 | |
if g == n: | |
while True: | |
ys = (pow(ys, 2, n) + c) % n | |
g = gcd(abs(x - ys), n) | |
if g > 1: | |
break | |
return g | |
def _primefactors(n, sort=False): | |
factors = [] | |
for checker in smallprimes: | |
while n % checker == 0: | |
factors.append(checker) | |
n //= checker | |
# early exit memoization | |
if n in _known_factors: | |
return factors + _known_factors[n] | |
if checker > n: break | |
if n < 2: return factors | |
while n > 1: | |
if isprime(n): | |
factors.append(n) | |
break | |
factor = pollard_brent(n) # trial division did not fully factor, switch to pollard-brent | |
factors.extend(primefactors(factor)) # recurse to factor the not necessarily prime factor returned by pollard-brent | |
n //= factor | |
if sort: factors.sort() | |
return factors | |
def primefactors(n, sort=False): | |
if n in _known_factors: | |
return _known_factors[n] | |
result = _primefactors(n) | |
_known_factors[n] = result | |
return result | |
from collections import defaultdict | |
def factorization(n): | |
factors = defaultdict(int) | |
for p1 in primefactors(n): | |
factors[p1] += 1 | |
return factors | |
def unique_factorise(n): | |
return set(primefactors(n)) | |
def totient(n): | |
if n == 0: return 1 | |
try: return totients[n] | |
except KeyError: pass | |
tot = 1 | |
for p, exp in factorization(n).items(): | |
tot *= (p - 1) * p ** (exp - 1) | |
totients[n] = tot | |
return tot | |
def gcd(a, b): | |
if a == b: return a | |
while b > 0: a, b = b, a % b | |
return a | |
def lcm(a, b): | |
return abs((a // gcd(a, b)) * b) | |
### end | |
## Create sparse binary factor vectors for any number, and assemble into a matrix | |
## One column for each unique prime factor | |
## One row for each number, 0=does not have this factor, 1=does have this factor (might be repeated) | |
from scipy.special import expi | |
import scipy.sparse | |
def factor_vector_lil(n): | |
## approximate prime counting function (upper bound for the values we are interested in) | |
## gives us the number of rows (dimension of our space) | |
d = int(np.ceil(expi(np.log(n)))) | |
x = scipy.sparse.lil_matrix((n,d)) | |
for i in range(2,n): | |
for k,v in factorization(i).items(): | |
x[i,prime_ix[k]] = 1 | |
if i%100000==0: # just check it is still alive... | |
print(i) | |
return x | |
### Generate the matrix for 1 million integers | |
n = 1_000 | |
X = factor_vector_lil(n) | |
# embed with UMAP | |
embedding = umap.UMAP(metric='cosine', n_epochs=500).fit_transform(X) | |
# save for later | |
np.savez('1e6_pts.npz', embedding=embedding) | |
# and save the image | |
from matplotlib import pyplot as plt | |
fig = plt.figure(figsize=(8,8)) | |
fig.patch.set_facecolor('black') | |
plt.scatter(embedding[:,0], embedding[:,1], marker='o', s=0.005, edgecolor='', | |
c=np.arange(n), cmap="magma") | |
plt.axis("off") | |
plt.savefig("primes_umap_1e6_16k_smaller_pts.png", dpi=2000, facecolor='black') | |
Amazing work!
I tried to reproduce it but instead of putting 1 I used the exponent number.
I have the notebook at:
Are the blobs in the top left corner of the opengl image the prime numbers? Awesome viz, btw!
Hi. Been trying to reproduce this via ubuntu (in windows 10), but heck, am stuck getting past this:
my virtualenv looks like this:
blessings==1.7
bpython==0.17.1
curtsies==0.3.0
Django==1.10.5
django-appconf==1.0.2
django-compressor==2.1.1
django-leaflet-storage==0.8.2
greenlet==0.4.14
numpy==1.15.1
oauthlib==2.1.0
olefile==0.45.1
Pillow==4.0.0
pkg-resources==0.0.0
psycopg2==2.6.2
Pygments==2.2.0
PyJWT==1.6.4
python-openid==2.2.5
rcssmin==1.0.6
requests==2.13.0
requests-oauthlib==1.0.0
rjsmin==1.0.12
scipy==1.1.0
six==1.11.0
social-auth-app-django==1.1.0
social-auth-core==1.7.0
typing==3.6.4
umap-project==0.8.3
wcwidth==0.1.7
(( note: there are some bpython deps in there ))
What's the right package/provider for umap.UMAP
?
How do I resolve this?
pip install umap-learn
rather than pip install umap
This is so great! I wanted to animate it through the integers so I wrote this (rewrite the f-strings if you have Python < 3.6):
step = 500
frame_num = int(n/step)
fname_prefix = 'primes_umap_2k_smaller_pts_'
print("rendering", frame_num, "frames with", step, "integers per frame")
for frame_n in range(1, frame_num+1):
_n = frame_n * step
fig = plt.figure(figsize=(8,8))
fig.patch.set_facecolor('black')
plt.scatter(embedding[0:_n,0], embedding[0:_n,1], s=0.005, c=np.arange(_n), cmap='magma', marker='o')
plt.axis("off")
plt.savefig(f"frames/{fname_prefix}{frame_n}.png", dpi=250, facecolor='black')
plt.close(fig)
print(f"rendered frame {frame_n}/{frame_num}", end='\r')
And used ffmpeg to make it into a video:
ffmpeg -ss 1 -t 200 -i frames\primes_umap_2k_smaller_pts_%d.png -c:v libx264 -vf fps=25 -pix_fmt yuv420p out.mp4
now one step closer to 70000D 🎉
(openGL 3D plot via pyqtgraph)