Last active
May 9, 2023 19:11
-
-
Save johnlees/3e06380965f367e4894ea20fbae2b90d to your computer and use it in GitHub Desktop.
Firth regression in python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
'''Python implementation of Firth regression by John Lees | |
See https://www.ncbi.nlm.nih.gov/pubmed/12758140''' | |
def firth_likelihood(beta, logit): | |
return -(logit.loglike(beta) + 0.5*np.log(np.linalg.det(-logit.hessian(beta)))) | |
# Do firth regression | |
# Note information = -hessian, for some reason available but not implemented in statsmodels | |
def fit_firth(y, X, start_vec=None, step_limit=1000, convergence_limit=0.0001): | |
logit_model = smf.Logit(y, X) | |
if start_vec is None: | |
start_vec = np.zeros(X.shape[1]) | |
beta_iterations = [] | |
beta_iterations.append(start_vec) | |
for i in range(0, step_limit): | |
pi = logit_model.predict(beta_iterations[i]) | |
W = np.diagflat(np.multiply(pi, 1-pi)) | |
var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) | |
# build hat matrix | |
rootW = np.sqrt(W) | |
H = np.dot(np.transpose(X), np.transpose(rootW)) | |
H = np.matmul(var_covar_mat, H) | |
H = np.matmul(np.dot(rootW, X), H) | |
# penalised score | |
U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) | |
new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) | |
# step halving | |
j = 0 | |
while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): | |
new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) | |
j = j + 1 | |
if (j > step_limit): | |
sys.stderr.write('Firth regression failed\n') | |
return None | |
beta_iterations.append(new_beta) | |
if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < convergence_limit): | |
break | |
return_fit = None | |
if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= convergence_limit: | |
sys.stderr.write('Firth regression failed\n') | |
else: | |
# Calculate stats | |
fitll = -firth_likelihood(beta_iterations[-1], logit_model) | |
intercept = beta_iterations[-1][0] | |
beta = beta_iterations[-1][1:].tolist() | |
bse = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) | |
return_fit = intercept, beta, bse, fitll | |
return return_fit | |
if __name__ == "__main__": | |
import sys | |
import warnings | |
import math | |
import statsmodels | |
import numpy as np | |
from scipy import stats | |
import statsmodels.api as smf | |
# create X and y here. Make sure X has an intercept term (column of ones) | |
# ... | |
# How to call and calculate p-values | |
(intercept, beta, bse, fitll) = fit_firth(y, X) | |
beta = [intercept] + beta | |
# Wald test | |
waldp = [] | |
for beta_val, bse_val in zip(beta, bse): | |
waldp.append(2 * (1 - stats.norm.cdf(abs(beta_val/bse_val)))) | |
# LRT | |
lrtp = [] | |
for beta_idx, (beta_val, bse_val) in enumerate(zip(beta, bse)): | |
null_X = np.delete(X, beta_idx, axis=1) | |
(null_intercept, null_beta, null_bse, null_fitll) = fit_firth(y, null_X) | |
lrstat = -2*(null_fitll - fitll) | |
lrt_pvalue = 1 | |
if lrstat > 0: # non-convergence | |
lrt_pvalue = stats.chi2.sf(lrstat, 1) | |
lrtp.append(lrt_pvalue) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you for your code!
I am running your code by I am receiving an error at line:
-> (intercept, beta, bse, fitll) = fit_firth(y, X) with the following message "Unable to coerce to Series, length must be 1: given 11871"
I have included an extract of X: X.shape -> (11871, 4)
is_male age genotype intercept term
0 0 28.92 0 1
1 0 70.95 0 1
2 0 29.92 0 1
.... ... ... ... ...
11869 0 74.95 0
11870 0 73.95 0
and y: y.shape -> (11871, 1)
Experimental Group
0 0
1 0
... ...
11869 1
11870 1
Thank you for your help it is much appreciated