-
-
Save johnlees/e62f95d7f96432412a3f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
jb_pubdistance <- function( | |
v_pubs=c("The Cambridge Brew House","The Cambridge Blue", | |
"King Street Run P.H.","The Elm Tree","The Regal"), | |
v_location="Cambridge, UK", | |
v_zoom=13, | |
listpubs=FALSE, | |
cam_pubs=TRUE, | |
crow_distances=FALSE, | |
units="minutes"){ | |
## Read in pub data | |
temporaryFile <- tempfile() | |
download.file("https://gist.githubusercontent.com/epijim/47da5037b6bb0d750b9b/raw/1f5608b826d039384775f2de87fcab9f5c8311d9/cam_pubs.csv", | |
destfile=temporaryFile, method="curl") | |
pubs <- read.csv(temporaryFile) | |
if(listpubs==TRUE){ | |
print(pubs$name) | |
stop("listpubs TRUE: function stopped and pubs listed") | |
} | |
# required package | |
library(ggmap) | |
library(hash) | |
# load map | |
basemap <- get_map(location=v_location, | |
zoom=v_zoom, source='google', | |
maptype="terrain", color="bw") | |
if(cam_pubs==TRUE){ | |
if(crow_distances==FALSE){ | |
## Read in distance data | |
temporaryFile <- tempfile() | |
download.file("https://gist.githubusercontent.com/epijim/1b049708cef27d9ddc34/raw/02a4f8559541b7dd5589ef1f530966759d81a711/campubdistances.csv", | |
destfile=temporaryFile, method="curl") | |
googled_distances <- read.csv(temporaryFile) | |
distance_hash <- hash(keys=paste(googled_distances$latlon_1,googled_distances$latlon_2), | |
values=googled_distances$minutes) | |
pubs$latlon <- paste0(pubs$lat,",",pubs$lon) | |
## Choose pubs you want ######################################### | |
selected.pubs <- subset(pubs, name %in% v_pubs) | |
## Variables to set ############################################# | |
n <- as.numeric(nrow(selected.pubs)) # number of pubs | |
M <- 5000 # number of iterations | |
temp <- 100 # initial temperature | |
finaltemp <- 0.1 | |
tempfactor <- (temp/finaltemp)^(-1/M) | |
fixed.itr <- 20 # number of iteration for a fixed temperature | |
## FUNCTIONS #################################################### | |
## Check if integer | |
check.integer <- function(x) { | |
x == round(x) | |
} | |
## Difference between 2 points | |
jb_difference <- function(testv1,testv2){ | |
d <- distance_hash[[paste(testv1,testv2)]] | |
if(is.null(d)) | |
{ | |
d <- distance_hash[[paste(testv2,testv1)]] | |
} | |
d <- as.numeric(d) | |
return(d) | |
} | |
distance <- function(ord){ | |
p <- length(ord) | |
d <- rep(0,p) | |
for(i in 1:(p-1)){ | |
d[i] <- jb_difference(selected.pubs$latlon[ord[i]], | |
selected.pubs$latlon[ord[i+1]]) | |
} | |
d[p] <- jb_difference(selected.pubs$latlon[ord[1]], | |
selected.pubs$latlon[ord[p]] ) | |
distance=sum(d) | |
return(distance) | |
} | |
## Initial values ################################################ | |
cost1 <- rep(0,M) | |
numaccept <- 0 # to keep track of accepting | |
templist <- rep(0,M) # to keep track of temperature | |
ord <- seq(1:n) # initial order for the path | |
max.distance <- 15 | |
## Run the loop ################################################ | |
for(i in 1:M){ | |
cost1[i]=distance(ord) | |
if (i %% 10 == 0) | |
{ | |
cat(sprintf("Iteration %d of %d\n",i,M)) | |
} | |
for(t in 1:(fixed.itr)){ | |
# propose to move | |
a=sample(1:n,2) # randomly choosing two cities | |
result=ord | |
result[a[2]]=ord[a[1]] # swapping | |
result[a[1]]=ord[a[2]] # swapping | |
U=runif(1) | |
if( | |
U < exp( (distance(ord)-distance(result))/temp )){ | |
ord<-result # accept/reject | |
numaccept <- numaccept + 1 # to compute the acceptance rate +} | |
} | |
} | |
templist[i] <- temp | |
temp <- temp*0.999 | |
temp <- tempfactor*temp | |
} | |
temperature <- data.frame(1:M,templist) | |
length <- 1:length(cost1) | |
fitting <- data.frame(length,cost1) | |
pubs_inorder <- selected.pubs[ord,] | |
map <- ggmap(basemap) + | |
geom_segment(aes(xend=c(tail(lon, n=-1), NA), | |
yend=c(tail(lat, n=-1), NA)), | |
data=pubs_inorder) | |
result <- list(distance=cost1[M], | |
pubs_inorder=pubs_inorder, | |
fittingprocess=fitting, | |
temperature=temperature) | |
} | |
if(crow_distances==TRUE){ | |
## Choose pubs you want ######################################### | |
selected.pubs <- subset(pubs, name %in% v_pubs) | |
## Variables to set ############################################# | |
n <- as.numeric(nrow(selected.pubs)) # number of pubs | |
M <- 4000 # number of iterations | |
temp <- 100 # initial temperature | |
finaltemp <- 0.1 | |
tempfactor <- (temp/finaltemp)^(-1/M) | |
fixed.itr <- 20 # number of iteration for a fixed temperature | |
## FUNCTIONS #################################################### | |
## Check if integer | |
check.integer <- function(x) { | |
x == round(x) | |
} | |
## Difference between 2 points | |
jb_difference <- function(lat_1,lon_1,lat_2,lon_2){ | |
rad <- pi/180 | |
a1 <- lat_1*rad | |
a2 <- lon_1*rad | |
b1 <- lat_2*rad | |
b2 <- lon_2*rad | |
dlon <- b2 - a2 | |
dlat <- b1 - a1 | |
a <- (sin(dlat/2))^2 + cos(a1) * cos(b1) * (sin(dlon/2))^2 | |
c <- 2 * atan2(sqrt(a), sqrt(1 - a)) | |
R <- 6378.14500001 | |
d <- R * c | |
return(d) | |
} | |
distance <- function(ord){ | |
p <- length(ord) | |
d <- rep(0,p) | |
for(i in 1:(p-1)){ | |
d[i] <- jb_difference(selected.pubs$lat[ord[i]], | |
selected.pubs$lon[ord[i]], | |
selected.pubs$lat[ord[i+1]], | |
selected.pubs$lon[ord[i+1]]) | |
} | |
d[p] <- jb_difference(selected.pubs$lat[ord[1]], | |
selected.pubs$lon[ord[1]], | |
selected.pubs$lat[ord[p]], | |
selected.pubs$lon[ord[p]] ) | |
distance=sum(d) | |
return(distance) | |
} | |
## Initial values ################################################ | |
cost1 <- rep(0,M) | |
numaccept <- 0 # to keep track of accepting | |
templist <- rep(0,M) # to keep track of temperature | |
ord <- seq(1:n) # initial order for the path | |
max.distance <- 15 | |
## Run the loop ################################################ | |
for(i in 1:M){ | |
cost1[i]=distance(ord) | |
for(t in 1:(fixed.itr)){ | |
# propose to move | |
a=sample(1:n,2) # randomly choosing two cities | |
result=ord | |
result[a[2]]=ord[a[1]] # swapping | |
result[a[1]]=ord[a[2]] # swapping | |
U=runif(1) | |
if( | |
U < exp( (distance(ord)-distance(result))/temp )){ | |
ord<-result # accept/reject | |
numaccept <- numaccept + 1 # to compute the acceptance rate +} | |
} | |
} | |
templist[i] <- temp | |
temp <- temp*0.999 | |
temp <- tempfactor*temp | |
} | |
temperature <- data.frame(1:M,templist) | |
length <- 1:length(cost1) | |
fitting <- data.frame(length,cost1) | |
pubs_inorder <- selected.pubs[ord,] | |
map <- ggmap(basemap) + | |
geom_segment(aes(xend=c(tail(lon, n=-1), NA), | |
yend=c(tail(lat, n=-1), NA)), | |
data=pubs_inorder) | |
result <- list(distance=cost1[M], | |
pubs_inorder=pubs_inorder, | |
fittingprocess=fitting, | |
temperature=temperature) | |
} | |
} | |
if(cam_pubs==FALSE){ | |
## Variables to set ############################################# | |
n <- as.numeric(nrow(v_pubs)) # number of pubs | |
M <- 4000 # number of iterations | |
temp <- 100 # initial temperature | |
finaltemp <- 0.1 | |
tempfactor <- (temp/finaltemp)^(-1/M) | |
fixed.itr <- 20 # number of iteration for a fixed temperature | |
## FUNCTIONS #################################################### | |
## Check if integer | |
check.integer <- function(x) { | |
x == round(x) | |
} | |
## Difference between 2 points | |
jb_difference <- function(lat_1,lon_1,lat_2,lon_2){ | |
rad <- pi/180 | |
a1 <- lat_1*rad | |
a2 <- lon_1*rad | |
b1 <- lat_2*rad | |
b2 <- lon_2*rad | |
dlon <- b2 - a2 | |
dlat <- b1 - a1 | |
a <- (sin(dlat/2))^2 + cos(a1) * cos(b1) * (sin(dlon/2))^2 | |
c <- 2 * atan2(sqrt(a), sqrt(1 - a)) | |
R <- 6378.14500001 | |
d <- R * c | |
return(d) | |
} | |
distance <- function(ord){ | |
p <- length(ord) | |
d <- rep(0,p) | |
for(i in 1:(p-1)){ | |
d[i] <- jb_difference(v_pubs[ord[i],1], | |
v_pubs[ord[i],2], | |
v_pubs[ord[i+1],1], | |
v_pubs[ord[i+1],2]) | |
} | |
d[p] <- jb_difference(v_pubs[ord[1],1], | |
v_pubs[ord[1],2], | |
v_pubs[ord[p],1], | |
v_pubs[ord[p],2] ) | |
distance=sum(d) | |
return(distance) | |
} | |
## Initial values ################################################ | |
cost1 <- rep(0,M) | |
numaccept <- 0 # to keep track of accepting | |
templist <- rep(0,M) # to keep track of temperature | |
ord <- seq(1:n) # initial order for the path | |
max.distance <- 15 | |
## Run the loop ################################################ | |
for(i in 1:M){ | |
cost1[i]=distance(ord) | |
for(t in 1:(fixed.itr)){ | |
# propose to move | |
a=sample(1:n,2) # randomly choosing two cities | |
result=ord | |
result[a[2]]=ord[a[1]] # swapping | |
result[a[1]]=ord[a[2]] # swapping | |
U=runif(1) | |
if( | |
U < exp( (distance(ord)-distance(result))/temp )){ | |
ord<-result # accept/reject | |
numaccept <- numaccept + 1 # to compute the acceptance rate +} | |
} | |
} | |
templist[i] <- temp | |
temp <- temp*0.999 | |
temp <- tempfactor*temp | |
} | |
temperature <- data.frame(1:M,templist) | |
length <- 1:length(cost1) | |
fitting <- data.frame(length,cost1) | |
pubs_inorder <- v_pubs[ord,] | |
map <- ggmap(basemap) + | |
geom_segment(aes(xend=c(tail(lon, n=-1), NA), | |
yend=c(tail(lat, n=-1), NA)), | |
data=pubs_inorder)+ | |
xlab("Latitude")+ | |
ylab("Longitude") | |
result <- list(distance=cost1[M], | |
pubs_inorder=pubs_inorder, | |
fittingprocess=fitting, | |
temperature=temperature) | |
} | |
print(map) | |
return(result) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment