Last active
January 17, 2021 00:04
-
-
Save johnmackintosh/972afb23997c2f982dca182aae88e1d1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(here) | |
library(data.table) | |
library(stringr) | |
setwd(here("2021-02")) | |
# read in and process | |
DT <- fread('Input.csv') | |
DT[,`:=`(`Order Date` = as.IDate(DT$`Order Date`, format = "%d/%m/%Y"), | |
`Shipping Date` = as.IDate(DT$`Shipping Date`, format = "%d/%m/%Y"))] | |
DT[, Model := str_replace_all(DT$Model, "[^:A-Za-z:]", "")] | |
DT[, Order_Value := `Value per Bike` * Quantity] | |
DT[, days_to_ship := `Shipping Date` - `Order Date`,] | |
# create tables 1 and 2 | |
output1 <- DT[,.SD,.SDcols = c('Model','Bike Type', 'Quantity', | |
'Order_Value', 'Value per Bike')] | |
output1[, `:=`(Quantity = sum(Quantity), | |
Order_Value = sum(Order_Value), | |
Avg_Value = mean(`Value per Bike`,na.rm = TRUE)), | |
by = .(Model, `Bike Type`)] | |
output1[, Avg_Value := round(Avg_Value,1)] | |
output1[, `Value per Bike` := NULL] | |
output1 <- unique(output1) | |
setnames(output1, old = 'Model', new = 'Brand') | |
## output 2 | |
output2 <- DT[,.SD,.SDcols = c('Model','Store', 'Quantity', | |
'Order_Value', 'days_to_ship')] | |
output2[, `:=`(Quantity = sum(Quantity), | |
Order_Value = sum(Order_Value), | |
Avg_Days_to_Ship = mean(days_to_ship,na.rm = TRUE)), | |
by = .(Model, Store)] | |
output2[, Avg_Days_to_Ship := round(Avg_Days_to_Ship,1)] | |
output2$days_to_ship <- NULL | |
output2 <- unique(output2) | |
setnames(output2, old = 'Model', new = 'Brand') | |
# checks | |
dim(output1) | |
str(output1) | |
dim(output2) | |
str(output2) | |
output1 <- fwrite(output1,"2021-02-output1.tsv", sep = "\t") | |
output2 <- fwrite(output2,"2021-02-output2.tsv", sep = "\t") | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Brand | Bike Type | Quantity | Order_Value | Avg_Value | |
---|---|---|---|---|---|
GIA | Mountain | 425 | 1021329 | 2378.9 | |
GIA | Gravel | 323 | 733087 | 2303.2 | |
GIA | Road | 407 | 896695 | 2184.7 | |
SPEC | Gravel | 974 | 2295397 | 2355.6 | |
SPEC | Mountain | 960 | 2344504 | 2422.7 | |
SPEC | Road | 937 | 2195597 | 2356.3 | |
ORRO | Mountain | 87 | 206550 | 2382.4 | |
ORRO | Road | 84 | 181300 | 2237.7 | |
ORRO | Gravel | 151 | 411644 | 2640 | |
BROM | Gravel | 186 | 433885 | 2335.5 | |
BROM | Mountain | 277 | 674770 | 2359.3 | |
BROM | Road | 257 | 656539 | 2500.7 | |
KONA | Mountain | 330 | 820537 | 2487 | |
KONA | Road | 273 | 647684 | 2430.2 | |
KONA | Gravel | 324 | 791841 | 2463.7 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Brand | Store | Quantity | Order_Value | Avg_Days_to_Ship | |
---|---|---|---|---|---|
GIA | Manchester | 204 | 466613 | 11 | |
GIA | Birmingham | 269 | 581733 | 9.9 | |
GIA | York | 251 | 593793 | 10.4 | |
GIA | Leeds | 203 | 460151 | 11.2 | |
GIA | London | 228 | 548821 | 10.7 | |
SPEC | Leeds | 570 | 1431894 | 10.4 | |
SPEC | London | 578 | 1358343 | 11.2 | |
SPEC | York | 458 | 1105777 | 10.4 | |
SPEC | Birmingham | 651 | 1488013 | 10.6 | |
SPEC | Manchester | 614 | 1451471 | 11.1 | |
ORRO | Leeds | 55 | 126334 | 11.9 | |
ORRO | Birmingham | 86 | 216169 | 11.4 | |
ORRO | Manchester | 43 | 118800 | 8.4 | |
ORRO | London | 61 | 151734 | 9.4 | |
ORRO | York | 77 | 186457 | 9 | |
BROM | London | 133 | 324635 | 11 | |
BROM | Manchester | 137 | 339832 | 10.9 | |
BROM | Leeds | 150 | 389116 | 9.8 | |
BROM | York | 145 | 361852 | 9.8 | |
BROM | Birmingham | 155 | 349759 | 11.8 | |
KONA | London | 216 | 524879 | 10.7 | |
KONA | Manchester | 148 | 370481 | 10.5 | |
KONA | York | 171 | 430667 | 11.1 | |
KONA | Birmingham | 184 | 435694 | 10.6 | |
KONA | Leeds | 208 | 498341 | 9.2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment