Skip to content

Instantly share code, notes, and snippets.

View johnny5550822's full-sized avatar

King Chung (Johnny) Ho johnny5550822

  • UCLA
  • Los Angeles
View GitHub Profile
@deehzee
deehzee / autoreload.md
Last active December 1, 2021 19:48
Auto reload of modules in jupyter notebook

Module autoreload

To auto-reload modules in jupyter notebook (so that changes in files *.py doesn't require manual reloading):

# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
"""
Affine transforms implemented on torch tensors, and
only requiring one interpolation
Included:
- Affine()
- AffineCompose()
- Rotation()
- Translation()
- Shear()
@karpathy
karpathy / pg-pong.py
Created May 30, 2016 22:50
Training a Neural Network ATARI Pong agent with Policy Gradients from raw pixels
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
@ShigekiKarita
ShigekiKarita / install.sh
Created October 9, 2015 19:11
How to install CUDA7.5 on Ubuntu 14.04
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get --purge remove "nvidia*"
sudo apt-get --purge remove "cuda*"
wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install cuda
@johnny5550822
johnny5550822 / min-char-rnn.py
Last active August 29, 2015 14:27 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)