Created
November 10, 2017 22:16
-
-
Save jojonki/6365c5c02f0a4bd12ae0e70d3b5d4d39 to your computer and use it in GitHub Desktop.
Add custom trainable parameters in PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
from torch import optim | |
import torch.nn.functional as F | |
seq_len = 10 | |
n_class = 5 | |
class SimpleNet(nn.Module): | |
def __init__(self): | |
super(SimpleNet, self).__init__() | |
self.W = nn.Parameter(torch.randn(seq_len, n_class), requires_grad=True) | |
def forward(self, x): | |
x = torch.matmul(x, self.W) | |
x = F.relu(x) | |
x = F.log_softmax(x) | |
return x | |
model = SimpleNet() | |
print('parameters----------') | |
for parameter in model.parameters(): | |
print(parameter) | |
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.0001) | |
loss_fn = nn.NLLLoss() | |
for i in range(10000): | |
in_data = Variable(torch.FloatTensor([[random.randint(0, n_class-1) for _ in range(seq_len)]])) | |
target_data = Variable(torch.LongTensor([ int(in_data.data[0][0]) ])) | |
optimizer.zero_grad() | |
output = model(in_data) | |
loss = loss_fn(output, target_data) | |
loss.backward() | |
optimizer.step() | |
if i % 1000 == 0: | |
print('loss:', loss.data[0]) | |
# test | |
print('======Test======') | |
for i in range(10): | |
in_data = Variable(torch.FloatTensor([[random.randint(0, n_class-1) for _ in range(seq_len)]])) | |
target_data = int(in_data.data[0][0]) | |
out = model(in_data) | |
_, ind = torch.max(out.data[0], 0) | |
print(ind[0] == target_data, 'out', ind[0], 'label', target_data) | |
print('after parameters') | |
print(next(model.parameters())) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment