Created
May 5, 2017 15:34
-
-
Save jojonki/63c200934224cd907ca49879f1c926b5 to your computer and use it in GitHub Desktop.
fix vae's x shape; not using batch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''This script demonstrates how to build a variational autoencoder with Keras. | |
Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114 | |
''' | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.stats import norm | |
from keras.layers import Input, Dense, Lambda, Layer | |
from keras.models import Model | |
from keras import backend as K | |
from keras import metrics | |
from keras.datasets import mnist | |
batch_size = 100 | |
original_dim = 784 | |
latent_dim = 2 | |
intermediate_dim = 256 | |
epochs = 50 | |
epsilon_std = 1.0 | |
x = Input(shape=(original_dim,)) | |
h = Dense(intermediate_dim, activation='relu')(x) | |
z_mean = Dense(latent_dim)(h) | |
z_log_var = Dense(latent_dim)(h) | |
def sampling(args): | |
z_mean, z_log_var = args | |
epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0., | |
stddev=epsilon_std) | |
return z_mean + K.exp(z_log_var / 2) * epsilon | |
# note that "output_shape" isn't necessary with the TensorFlow backend | |
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var]) | |
# we instantiate these layers separately so as to reuse them later | |
decoder_h = Dense(intermediate_dim, activation='relu') | |
decoder_mean = Dense(original_dim, activation='sigmoid') | |
h_decoded = decoder_h(z) | |
x_decoded_mean = decoder_mean(h_decoded) | |
# Custom loss layer | |
class CustomVariationalLayer(Layer): | |
def __init__(self, **kwargs): | |
self.is_placeholder = True | |
super(CustomVariationalLayer, self).__init__(**kwargs) | |
def vae_loss(self, x, x_decoded_mean): | |
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) | |
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) | |
return K.mean(xent_loss + kl_loss) | |
def call(self, inputs): | |
x = inputs[0] | |
x_decoded_mean = inputs[1] | |
loss = self.vae_loss(x, x_decoded_mean) | |
self.add_loss(loss, inputs=inputs) | |
# We won't actually use the output. | |
return x | |
y = CustomVariationalLayer()([x, x_decoded_mean]) | |
vae = Model(x, y) | |
vae.compile(optimizer='rmsprop', loss=None) | |
# train the VAE on MNIST digits | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train = x_train.astype('float32') / 255. | |
x_test = x_test.astype('float32') / 255. | |
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) | |
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) | |
print(x_train.shape) | |
vae.fit(x_train, | |
shuffle=True, | |
epochs=epochs, | |
batch_size=batch_size, | |
validation_data=(x_test, x_test)) | |
# build a model to project inputs on the latent space | |
encoder = Model(x, z_mean) | |
# display a 2D plot of the digit classes in the latent space | |
x_test_encoded = encoder.predict(x_test, batch_size=batch_size) | |
plt.figure(figsize=(6, 6)) | |
plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test) | |
plt.colorbar() | |
plt.show() | |
# build a digit generator that can sample from the learned distribution | |
decoder_input = Input(shape=(latent_dim,)) | |
_h_decoded = decoder_h(decoder_input) | |
_x_decoded_mean = decoder_mean(_h_decoded) | |
generator = Model(decoder_input, _x_decoded_mean) | |
# display a 2D manifold of the digits | |
n = 15 # figure with 15x15 digits | |
digit_size = 28 | |
figure = np.zeros((digit_size * n, digit_size * n)) | |
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian | |
# to produce values of the latent variables z, since the prior of the latent space is Gaussian | |
grid_x = norm.ppf(np.linspace(0.05, 0.95, n)) | |
grid_y = norm.ppf(np.linspace(0.05, 0.95, n)) | |
for i, yi in enumerate(grid_x): | |
for j, xi in enumerate(grid_y): | |
z_sample = np.array([[xi, yi]]) | |
x_decoded = generator.predict(z_sample) | |
digit = x_decoded[0].reshape(digit_size, digit_size) | |
figure[i * digit_size: (i + 1) * digit_size, | |
j * digit_size: (j + 1) * digit_size] = digit | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(figure, cmap='Greys_r') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment