Created
June 17, 2020 08:53
-
-
Save jojonki/ec4520ba706ab1ad7e1c8fb694da024b to your computer and use it in GitHub Desktop.
BPE (Neural Machine Translation of Rare Words with Subword Units, Rico Sennrich.)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import collections | |
import re | |
def get_stats(vocab): | |
pairs = collections.defaultdict(int) | |
for word, freq in vocab.items(): | |
symbols = word.split() | |
for i in range(len(symbols)-1): | |
pairs[symbols[i],symbols[i+1]] += freq | |
return pairs | |
def merge_vocab(pair, v_in): | |
v_out = {} | |
bigram = re.escape(' '.join(pair)) | |
p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)') | |
for word in v_in: | |
w_out = p.sub(''.join(pair), word) | |
v_out[w_out] = v_in[word] | |
return v_out | |
vocab={'l o w </w>':5,'l o w e r </w>':2,'n e w e s t </w>':6,'w i d e s t </w>':3} | |
num_merges = 10 | |
for i in range(num_merges): | |
pairs = get_stats(vocab) | |
best = max(pairs, key=pairs.get) | |
vocab = merge_vocab(best, vocab) | |
print(best) | |
print('vocab') | |
print(vocab) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment