Last active
October 14, 2022 11:39
-
-
Save jojonki/fa1c957e798d73fd420a0d34f5c10056 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# ref: http://taotao54321.hatenablog.com/entry/2016/11/08/180245 | |
import numpy as np | |
import gym | |
from gym import wrappers | |
# Q learning params | |
ALPHA = 0.1 # learning rate | |
GAMMA = 0.99 # reward discount | |
LEARNING_COUNT = 100000 | |
TEST_COUNT = 1000 | |
EPS = 0.1 | |
TURN_LIMIT = 100 | |
IS_MONITOR = True | |
class Agent: | |
def __init__(self, env): | |
self.env = env | |
self.episode_reward = 0.0 | |
self.q_val = np.zeros(16 * 4).reshape(16, 4).astype(np.float32) | |
def learn(self): | |
# one episode learning | |
state = self.env.reset() | |
#self.env.render() | |
for t in range(TURN_LIMIT): | |
if np.random.rand() < EPS: # explore | |
act = self.env.action_space.sample() # random | |
else: # exploit | |
act = np.argmax(self.q_val[state]) | |
next_state, reward, done, info = self.env.step(act) | |
q_next_max = np.max(self.q_val[next_state]) | |
# Q <- Q + a(Q' - Q) | |
# <=> Q <- (1-a)Q + a(Q') | |
self.q_val[state][act] = (1 - ALPHA) * self.q_val[state][act]\ | |
+ ALPHA * (reward + GAMMA * q_next_max) | |
#self.env.render() | |
if done: | |
return reward | |
else: | |
state = next_state | |
return 0.0 # over limit | |
def test(self): | |
state = self.env.reset() | |
for t in range(TURN_LIMIT): | |
act = np.argmax(self.q_val[state]) | |
next_state, reward, done, info = self.env.step(act) | |
if done: | |
return reward | |
else: | |
state = next_state | |
return 0.0 # over limit | |
def main(): | |
env = gym.make("FrozenLake-v0") | |
if IS_MONITOR: | |
env = wrappers.Monitor(env, './FrozenLake-v0', force=True) | |
agent = Agent(env) | |
print("###### LEARNING #####") | |
reward_total = 0.0 | |
for i in range(LEARNING_COUNT): | |
reward_total += agent.learn() | |
print("episodes : {}".format(LEARNING_COUNT)) | |
print("total reward : {}".format(reward_total)) | |
print("average reward: {:.2f}".format(reward_total / LEARNING_COUNT)) | |
print("Q Value :{}".format(agent.q_val)) | |
print("###### TEST #####") | |
reward_total = 0.0 | |
for i in range(TEST_COUNT): | |
reward_total += agent.test() | |
print("episodes : {}".format(TEST_COUNT)) | |
print("total reward : {}".format(reward_total)) | |
print("average reward: {:.2f}".format(reward_total / TEST_COUNT)) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment