Last active
December 19, 2015 06:09
-
-
Save jokergoo/5909943 to your computer and use it in GitHub Desktop.
use heatmap to represent density distribution
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(RColorBrewer) | |
# since gene expression data always contains a lot of samples. | |
# If one want to see distributions of samples, using boxplot would be not so clear. | |
# The function use continuous colors to represent density distributions of expression | |
# values in samples and can make a better illustration of the data. | |
heatplot = function(x, col=rev(brewer.pal(10, "Spectral")), draw.quantiles = TRUE, align = TRUE, each = FALSE, ...) { | |
if(is.vector(x) && class(x) != "list") { | |
x = as.matrix(x) | |
} | |
if(is.matrix(x)) { | |
n = dim(x)[2] | |
# if different styles of colors are used, it should be formatted as a list | |
# because the number of sections of colors may be different | |
dx = apply(x, 2, function(x) density(x)$x) # data value | |
dy = apply(x, 2, function(x) density(x)$y) # density value | |
quantile.values = apply(x, 2, quantile) | |
mean.values = apply(x, 2, mean) | |
} | |
if(is.list(x)) { | |
n = length(x) | |
dx = sapply(x, function(x) density(x)$x) # data value | |
dy = sapply(x, function(x) density(x)$y) # density value | |
quantile.values = sapply(x, quantile) | |
mean.values = sapply(x, mean) | |
} | |
if(!is.list(col)) { | |
col = rep(list(col), n) | |
} | |
if(is.list(col) && length(col) != n) { | |
stop("Since 'col' is specified as a list, it should has the same length as numbers of columns in 'x'.") | |
} | |
if(!all(sapply(col, length) > 1)) { | |
stop("Length of any color vector should contain at least two colors.") | |
} | |
if(! each) { | |
min.density = min(as.vector(dy)) | |
max.density = max(as.vector(dy)) | |
range.density = max.density - min.density | |
dy = (dy - min.density) / range.density | |
} | |
min.value = min(as.vector(dx)) | |
max.value = max(as.vector(dx)) | |
range.value = max.value - min.value | |
plot(c(0, n+1), c(min.value, max.value), type = "n", axes=FALSE, ann=FALSE, ...) | |
for(j in 1:n) { | |
if(each) { | |
min.density = min(dy[, j]) | |
max.density = max(dy[, j]) | |
range.density = max.density - min.density | |
dy[, j] = (dy[, j] - min.density) / range.density | |
} | |
for(i in 2:length(dy[, j])) { | |
color = color.pal(dy[i, j], col=col[[j]], breaks=seq(0, 1, length.out=length(col[[j]]))) | |
rect(j-0.5, dx[i-1, j], j+0.5, dx[i, j], col=color, border=color) | |
} | |
if(align) { | |
color = color.pal(min.density, col=col[[j]], breaks=seq(0, 1, length.out=length(col[[j]]))) | |
rect(j-0.5, min(dx[, j]), j+0.5, min.value, col=color, border=color) | |
rect(j-0.5, max(dx[, j]), j+0.5, max.value, col=color, border=color) | |
} | |
} | |
#axis(side = 2) | |
if(draw.quantiles) { | |
for(i in 1:dim(quantile.values)[1]) { | |
lines(1:n, quantile.values[i, ], col="black", lwd=1) | |
} | |
lines(1:n, mean.values, col = "black", lwd = 1) | |
text(rep(n+0.6, dim(quantile.values)[1]), quantile.values[, n], rownames(quantile.values), cex=0.8, adj=c(0, 0.5)) | |
text(n+0.6, mean.values[n], "mean", cex=0.8, adj=c(0, 0.5)) | |
} | |
} | |
jitplot = function(x, alpha = 0.05) { | |
if(is.matrix(x)) { | |
n = dim(x)[2] | |
} | |
min.value = min(as.vector(x)) | |
max.value = max(as.vector(x)) | |
range.value = max.value - min.value | |
plot(c(0, n+1), c(min.value, max.value), type = "n", axes=FALSE, ann=FALSE) | |
for(j in 1:n) { | |
k = length(x[, j]) | |
points((runif(k)-0.5)*0.8+j, x[, j], col = rgb(0, 0, 0, alpha), pch=16) | |
} | |
} | |
x = NULL | |
for(i in 1:30) { | |
mean = runif(1)*5 | |
sd = runif(1)+5 | |
x = cbind(x, rnorm(1000, mean, sd)) | |
} | |
par(mfrow = c(2, 2), mar = c(1, 1, 1, 1)) | |
heatplot(x, each = TRUE, draw.quantiles = FALSE) | |
jitplot(x) | |
vioplot(x[,1],x[,2],x[,3],x[,4],x[,5],x[,6],x[,7],x[,8],x[,9],x[,10], | |
x[,11],x[,12],x[,13],x[,14],x[,15],x[,16],x[,17],x[,18],x[,19],x[,20], | |
x[,21],x[,22],x[,23],x[,24],x[,25],x[,26],x[,27],x[,28],x[,29],x[,30]) | |
boxplot(x) |
Author
jokergoo
commented
Jul 2, 2013
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment