Skip to content

Instantly share code, notes, and snippets.

@jon1scr
Created February 18, 2021 15:32
Show Gist options
  • Save jon1scr/e79d4ae88a0ecb6a99e24b9e1784e4f8 to your computer and use it in GitHub Desktop.
Save jon1scr/e79d4ae88a0ecb6a99e24b9e1784e4f8 to your computer and use it in GitHub Desktop.
RiskEngineering notebooks
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyzing earthquake data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"https://risk-engineering.org/static/img/logo-RE.png\" width=\"100\" alt=\"\" style=\"float:right;margin:15px;\">\n",
"\n",
"This notebook is an element of the [risk-engineering.org courseware](https://risk-engineering.org/). It can be distributed under the terms of the [Creative Commons Attribution-ShareAlike licence](https://creativecommons.org/licenses/by-sa/4.0/).\n",
"\n",
"Author: Eric Marsden <[email protected]>. \n",
"\n",
"---\n",
"\n",
"This notebook contains an introduction to the use of Python and SciPy to analyze data concerning earthquakes. See the [associated course materials](https://risk-engineering.org/statistical-modelling/) for background information and to download this content as a Jupyter notebook."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy\n",
"import scipy.stats\n",
"import pandas\n",
"import matplotlib.pyplot as plt\n",
"plt.style.use(\"bmh\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The USGS provides data on earthquakes that occurred throughout the world at https://earthquake.usgs.gov/earthquakes/search/. For convenience, we have extracted data for 2017 earthquakes of magnitude larger than 5 in CSV format."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>time</th>\n",
" <th>latitude</th>\n",
" <th>longitude</th>\n",
" <th>depth</th>\n",
" <th>mag</th>\n",
" <th>magType</th>\n",
" <th>nst</th>\n",
" <th>gap</th>\n",
" <th>dmin</th>\n",
" <th>rms</th>\n",
" <th>...</th>\n",
" <th>updated</th>\n",
" <th>place</th>\n",
" <th>type</th>\n",
" <th>horizontalError</th>\n",
" <th>depthError</th>\n",
" <th>magError</th>\n",
" <th>magNst</th>\n",
" <th>status</th>\n",
" <th>locationSource</th>\n",
" <th>magSource</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2017-12-31T20:59:02.500Z</td>\n",
" <td>-53.0266</td>\n",
" <td>-118.3468</td>\n",
" <td>10.00</td>\n",
" <td>5.1</td>\n",
" <td>mb</td>\n",
" <td>NaN</td>\n",
" <td>37.0</td>\n",
" <td>30.620</td>\n",
" <td>0.85</td>\n",
" <td>...</td>\n",
" <td>2018-03-17T01:54:41.040Z</td>\n",
" <td>Southern East Pacific Rise</td>\n",
" <td>earthquake</td>\n",
" <td>13.7</td>\n",
" <td>1.8</td>\n",
" <td>0.053</td>\n",
" <td>117.0</td>\n",
" <td>reviewed</td>\n",
" <td>us</td>\n",
" <td>us</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2017-12-31T20:27:49.390Z</td>\n",
" <td>-8.1161</td>\n",
" <td>68.0644</td>\n",
" <td>10.00</td>\n",
" <td>5.1</td>\n",
" <td>mww</td>\n",
" <td>NaN</td>\n",
" <td>59.0</td>\n",
" <td>12.965</td>\n",
" <td>0.72</td>\n",
" <td>...</td>\n",
" <td>2018-03-17T01:54:41.040Z</td>\n",
" <td>Chagos Archipelago region</td>\n",
" <td>earthquake</td>\n",
" <td>6.5</td>\n",
" <td>1.8</td>\n",
" <td>0.062</td>\n",
" <td>25.0</td>\n",
" <td>reviewed</td>\n",
" <td>us</td>\n",
" <td>us</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2017-12-31T14:53:31.580Z</td>\n",
" <td>5.4949</td>\n",
" <td>124.9006</td>\n",
" <td>30.80</td>\n",
" <td>5.1</td>\n",
" <td>mww</td>\n",
" <td>NaN</td>\n",
" <td>60.0</td>\n",
" <td>1.703</td>\n",
" <td>1.01</td>\n",
" <td>...</td>\n",
" <td>2018-03-17T01:54:40.040Z</td>\n",
" <td>40km S of Daliao, Philippines</td>\n",
" <td>earthquake</td>\n",
" <td>6.7</td>\n",
" <td>4.0</td>\n",
" <td>0.073</td>\n",
" <td>18.0</td>\n",
" <td>reviewed</td>\n",
" <td>us</td>\n",
" <td>us</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2017-12-31T14:51:58.200Z</td>\n",
" <td>-11.8634</td>\n",
" <td>165.4973</td>\n",
" <td>9.55</td>\n",
" <td>5.1</td>\n",
" <td>mb</td>\n",
" <td>NaN</td>\n",
" <td>74.0</td>\n",
" <td>5.963</td>\n",
" <td>1.03</td>\n",
" <td>...</td>\n",
" <td>2018-03-17T01:54:40.040Z</td>\n",
" <td>132km SSW of Lata, Solomon Islands</td>\n",
" <td>earthquake</td>\n",
" <td>9.1</td>\n",
" <td>4.1</td>\n",
" <td>0.059</td>\n",
" <td>92.0</td>\n",
" <td>reviewed</td>\n",
" <td>us</td>\n",
" <td>us</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2017-12-31T03:48:57.420Z</td>\n",
" <td>29.6759</td>\n",
" <td>129.3045</td>\n",
" <td>162.80</td>\n",
" <td>5.0</td>\n",
" <td>mww</td>\n",
" <td>NaN</td>\n",
" <td>89.0</td>\n",
" <td>2.972</td>\n",
" <td>0.77</td>\n",
" <td>...</td>\n",
" <td>2018-03-17T01:54:40.040Z</td>\n",
" <td>146km N of Naze, Japan</td>\n",
" <td>earthquake</td>\n",
" <td>7.6</td>\n",
" <td>4.2</td>\n",
" <td>0.065</td>\n",
" <td>23.0</td>\n",
" <td>reviewed</td>\n",
" <td>us</td>\n",
" <td>us</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 22 columns</p>\n",
"</div>"
],
"text/plain": [
" time latitude longitude depth mag magType nst \\\n",
"0 2017-12-31T20:59:02.500Z -53.0266 -118.3468 10.00 5.1 mb NaN \n",
"1 2017-12-31T20:27:49.390Z -8.1161 68.0644 10.00 5.1 mww NaN \n",
"2 2017-12-31T14:53:31.580Z 5.4949 124.9006 30.80 5.1 mww NaN \n",
"3 2017-12-31T14:51:58.200Z -11.8634 165.4973 9.55 5.1 mb NaN \n",
"4 2017-12-31T03:48:57.420Z 29.6759 129.3045 162.80 5.0 mww NaN \n",
"\n",
" gap dmin rms ... updated \\\n",
"0 37.0 30.620 0.85 ... 2018-03-17T01:54:41.040Z \n",
"1 59.0 12.965 0.72 ... 2018-03-17T01:54:41.040Z \n",
"2 60.0 1.703 1.01 ... 2018-03-17T01:54:40.040Z \n",
"3 74.0 5.963 1.03 ... 2018-03-17T01:54:40.040Z \n",
"4 89.0 2.972 0.77 ... 2018-03-17T01:54:40.040Z \n",
"\n",
" place type horizontalError depthError \\\n",
"0 Southern East Pacific Rise earthquake 13.7 1.8 \n",
"1 Chagos Archipelago region earthquake 6.5 1.8 \n",
"2 40km S of Daliao, Philippines earthquake 6.7 4.0 \n",
"3 132km SSW of Lata, Solomon Islands earthquake 9.1 4.1 \n",
"4 146km N of Naze, Japan earthquake 7.6 4.2 \n",
"\n",
" magError magNst status locationSource magSource \n",
"0 0.053 117.0 reviewed us us \n",
"1 0.062 25.0 reviewed us us \n",
"2 0.073 18.0 reviewed us us \n",
"3 0.059 92.0 reviewed us us \n",
"4 0.065 23.0 reviewed us us \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pandas.read_csv(\"https://risk-engineering.org/static/data/earthquakes-2017.csv\")\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1559"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's clean up the data a little."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"data.time = pandas.to_datetime(data.time)\n",
"data.sort_values(\"time\", inplace=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot the data to see whether we can identify any visible patterns. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAD6CAYAAADQtZyUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABq/UlEQVR4nO29e3gdx33f/V3cQdwIAiAAiiQoWReKsczEtmzapi1btHuR3TRO+vhp07p+3Vzq3Jo4raM0bb3aJE2jOMlbp2maJk5TpU9fpUnf13ESqUlkKaJulCxLEeWE1F2CSAkHBAgQBI8A4rbvHwd7uGfP7O7snr3M7H4/z4NH4jm7M7+Z+c5vZufMzs+wbRuEEEIIIYQQQgghpDy05W0AIYQQQgghhBBCCMkWLggRQgghhBBCCCGElAwuCBFCCCGEEEIIIYSUDC4IEUIIIYQQQgghhJQMLggRQgghhBBCCCGElAwuCBFCCCGEEEIIIYSUjI68DQCABx980O7u7s7bDEIIIYQQQgghhJDC8NZbb80fO3ZsTPSdEgtC3d3dOHjwYN5mJML09DSmpqbyNoMQANQj0QPqlKgONUp0g5olqkONEh0oik6ffvrpab/v+MpYwnR2duZtAiF1qEeiA9QpUR1qlOgGNUtUhxolOlAGnXJBKGGGhobyNoGQOtQj0QHqlKgONUp0g5olqkONEh0og065IJQw8/PzeZtASB3qkegAdUpUhxolukHNEtWhRokOlEGnXBBKmDKsIhJ9oB6JDlCnRHWoUaIb1CxRHWqU6EAZdMoFoYRZW1vL2wRC6lCPRAeoU6I61CjRDWqWqA41SnSgDDrlglDCrKys5G0CIXWoR6ID1ClRHWqU6AY1S1SHGiU6UAadckEoYSYmJvI2gZA61CPRAeqUqA41SnQjSc2emq3i7mcqODVbTSxNQuhXiQ6UQadcEEqYSqWStwmE1KEeiQ5Qp0R1qFGiG0lp9tRsFbff+yLuemoGt9/7IheFSGLQrxIdKINOuSCUMF1dXXmbQEgd6pHoAHVKVIcaJbqRlGZPzixjfcvGlg2sb9k4ObOcSLqE0K8SHSiDTrkglDADAwN5m0BIHeqR6AB1SlSHGiW6kZRmD08OoLPNQJsBdLYZODzJvkCSgX6V6EAZdMoFoYQ5f/583iYQUod6JDpAnRLVoUaJbiSl2UPjfbjztuvwmXdN4s7brsOh8b5E0iWEfpXoQBl02pG3AUVjeHg4bxMIqUM9Eh2gTonqUKNEN5LU7KHxPi4EkcShXyU6UAadcodQwpQhNB3RB+qR6AB1SlSHGiW6Qc0S1aFGiQ6UQadcEEqY1dXVvE0gpA71SHSAOiWqQ40S3aBmiepQo0QHyqBTLgglzMTERN4mEFKHeiQ6QJ0S1aFGiW5Qs0R1qFGiA2XQKReEEqZSqeRtAiF1qEeiA9QpUR1qlOgGNUtUhxolOlAGnaZ+qLRlWbsB3AHgOwDYAH7LNM3/nna+edHT05O3CYTUoR6JDlCnRHWoUaIb1CxRHWqU6EAZdJrFDqHfB9AO4MMAPgvgP1uW9e4M8s2F3t7evE0gpA71SHSAOiWqQ40S3aBmiepQo0QHyqDTLBaEbgLwgGmalwG8CGAOQGHjty0uLuZtAiF1qEeiA9QpUR1qlOgGNUtUhxolOlAGnab+yhiAuwH8rGVZJwHcBuAJAF/PIN9cGBkZydsEQupQj0QHqFOiOtQo0Q1qlqgONUp0oAw6zWJB6CcAfAXAXwN4AcC7TdO03RdUq1Xcdddd6OzsxObmJvbv348jR46gUqmgr68P7e3tuHjxIsbGxrCwsADbtjE2NobZ2Vn09/cDAC5duoTx8XHMzc3BMAzs2rULc3NzGBwcxObmJqrVKiYmJlCpVNDZ2YmhoSHMz89jaGgIa2trWFlZqX/f1dWFgYEBnD9/HsPDw1hZWcHq6mr9+56eHvT29mJxcREjIyNYXl7G2toaJiYmMD09jbGxMXR1dWFpaQmjo6NYWlrC+vp6/X7dylSpVNDb28syaVims2fPore3t1BlKmI7lb1M09PT9SgORSlTEdupzGWan59HV1dXocpUxHZima6UaXp6Gvv27StUmYrYTmUuk3eOWoQyFbGdyl6m6elpjI+Pa1+mIAzbtgMvaBXLst4H4GcAfAnAl1F7Te1jpmmec645ceKEffDgwVTtyIrp6WlMTU3lbQYhAKhHogfUKVEdapToBjVLVIcaJTpQFJ0+/fTTTx07dkx4jnOqZwhZljUC4GsAfsQ0zYcAfBBAF4BfSTPfPHF+5SZEBahHogPUKVEdapToBjVLVIcaJTpQBp2mfaj0UQDtpmm+DgCmaV4C8OcADqWcb25UKpW8TSCkDvVIdIA6JapDjRLdoGaJ6lCjRAfKoNO0F4T+BsCgZVkfAwDLsnagFn7+7pTzzY0yhKYDgFOzVdz9TAWnZqt5m0ICKIseid5Qp0R1qFGiG9QsUR1qlOhAGXSa6oKQaZovAfgUgF+2LOspAA8D+D0Av5pmvnnS1dWVtwmpc2q2itvvfRF3PTWD2+99kYtCClMGPRL9oU6J6lCjRDeoWaI61CjRgTLoNPUoY6ZpfhXAV9PORxWWlpawc+fOvM1IlZMzy1jfsrFlA+tbNk7OLOPQeF/eZhEBZdAj0R/qlKgONUp0g5olqkONEh0og07TfmWsdISFdSsChycH0NlmoM0AOtsMHJ4cyNsk4kMZ9Ej0hzolqkONEt2gZonqUKNEB8qgUy4IJczS0lLeJqTOofE+3HnbdfjMuyZx523XcXeQwpRBj0R/qFOiOtQo0Q1qlqgONUp0oAw6Tf2VsbKxvr6etwmZcGi8jwtBGlAWPRK9oU6J6lCjRDeoWaI61CjRgTLolDuEEmZiYiJvEwipQz0SHaBOiepQo0Q3qFmiOtQo0YEy6JQLQglTqVTyNoGQOtQj0QHqlKgONUp0g5olqkONEh0og065IJQwfX18jYqoA/VIdIA6JapDjRLdoGaJ6lCjRAfKoFMuCCVMe3t73iYQUod6JDpAnRLVoUaJblCzRHWoUaIDZdApF4QS5uLFi3mbQEgd6pHoAHVKVIcaJbpBzRLVoUaJDpRBp1wQSpixsbG8TSCkDvVIdIA6JapDjRLdoGaJ6lCjRAfKoFMuCCXMwsJC3iYQUod6JDpAnRLV0VWjp2aruPuZCk7NVvM2hWSMrpol5YEaJTpQBp125G1A0bBtO28TCKlDPRIdoE6J6uio0VOzVdx+74tY37LR2VbBnbddh0PjxT8ck9TQUbOkXFCjRAfKoFPuEEqYMmwrI/pAPRIdoE6J6uio0ZMzy1jfsrFlA+tbNk7OLOdtEskQHTVLygU1SnSgDDrlglDCzM7O5m0CIXWoR6ID1ClRHR01enhyAJ1tBtoMoLPNwOHJgbxNIhmio2ZJuaBGiQ6UQad8ZSxh+vv78zaBkDrUI9EB6pSojo4aPTTehztvuw4nZ5ZxeHKAr4uVDB01S8oFNUp0oAw65YIQIYQQQkgBOTTex4UgQgghhPjCV8YS5tKlS3mbQEgd6pHoAHVKVIcaJbpBzRLVoUaJDpRBp1wQSpjx8fG8TSCkDvVIdIA6JapDjRLdoGaJ6lCjRAfKoFMuCCXM3Nxc3iYQUod6JDpAnRLVoUaJblCzRHWoUaIDZdApF4QSxjCMvE0gpA71SHSAOiWqQ40S3aBmiepQo0QHyqBTLgglzK5du/I2gZA61CPRAeqUqA41SnSDmiWqQ40SHSiDTrkglDBl2FZG9IF6JDpAnRLVoUaJblCzRHWoUaIDZdApF4QSZnBwMG8TCKlDPRIdoE6J6lCjRDeoWaI61CjRgTLolAtCCbO5uZm3CYTUoR6JDlCnRHWoUaIb1CxRHWqU6EAZdMoFoYSpVqt5m0BIHeqR6AB1SlSHGiW6Qc0S1aFGiQ6UQadcEEqYiYmJvE0gpA71SHSAOiWqQ40S3aBmiepQo0QHyqBTLgglTKVSydsEQupQj0QHqFOiOtQo0Q1qlqgONUp0oAw65YJQwnR2duZtAiF1qEeiA9QpUR1qlOgGNUtUhxolOlAGnXJBKGGGhobyNoGQOtQj0QHqlKgONUp0g5olqkONEh0og065IJQw8/PzeZtASB3qkegAdUpUhxolukHNEtWhRokOlEGnXBBKmDKsIhJ9oB6JDlCnRHWoUaIb1CxRHWqU6EAZdMoFoYRZW1vL2wRC6lCPRAeoU6I61CjRDWqWqA41SnSgDDrlglDCrKys5G0CIXWoR6ID1ClRHWqU6AY1S1SHGiU6UAadckEoYSYmJvI2gZA61CPRAeqUqA41SnSDmiWqQ40SHSiDTrkglDCVSiVvEwipQz0SHaBOiepQo0Q3qFmiOtQo0YEy6JQLQgnT1dWVeh6nZqu4+5kKTs1WU8+L6E0WeiSkVahTojrUKNENapaoTt4a5fMUkSFvnWZBR94GFI2BgYFU0z81W8Xt976I9S0bnW0V3HnbdTg03pdqnkRf0tYjIUlAnRLVoUaJblCzRHXy1Cifp4gsZfCl3CGUMOfPn081/ZMzy1jfsrFlA+tbNk7OLKeaH9GbtPVISBJQp0R1qFGiG9QsUZ08NcrnKSJLGXwpF4QSZnh4ONX0D08OoLPNQJsBdLYZODxZ/FVLEp+09UhIElCnRHWoUaIb1CxRnTw1yucpIksZfClfGUuYlZUVDA4Oppb+ofE+3HnbdTg5s4zDkwPc3kgCSVuPhCQBdUpUhxolukHNEtXJU6N8niKylMGXckEoYVZXV1PP49B4Hx0XkSILPRLSKtQpUR1qlOgGNUtUJ2+N8nmKyJC3TrOAr4wlzMTERN4mEFKHeiQ6QJ0S1aFGiW5Qs0R1qFGiA2XQKReEEqZSqeRtAiF1qEeiA9QpUR1qlOgGNUtUhxolOlAGnXJBKGF6enryNoGQOtQj0QHqlKgONUp0g5olqkONEh0og065IJQwvb29eZtASB3qkegAdUpUhxolukHNEtWhRokOlEGnXBBKmMXFxbxNIKQO9Uh0gDolqkONEt2gZonqUKNEB8qgUy4IJczIyEjeJhBSh3okOkCdEtWhRoluULNEdahRogNl0CkXhBJmeXk5bxMIqUM9Eh2gTonqUKNEN6hZojrUKNGBMuiUC0IJs7a2lrcJhNShHokOUKdEdahRohtF0uyp2SrufqaCU7PVvE0hCVIkjZLiUgadduRtQNGYmJjI2wRC6lCPRAeoU6I61CjRjaJo9tRsFbff+yLWt2x0tlVw523X4dB4X95mkQQoikZJsSmDTrlDKGEqlUreJhBSh3okOkCdEtWhRoluFEWzJ2eWsb5lY8sG1rdsnJwp/usbZaEoGiXFpgw6zXxByLIsI+s8s6QMoemIPlCPRAeoU6I61CjRjaJo9vDkADrbDLQZQGebgcOTA3mbRBKiKBolxaYMOk31lTHLsl4FcAnAMoB1AKMATgD4/jTzzZOurq68TSCkDvVIdIA6JapDjRLdKIpmD4334c7brsPJmWUcnhzg62IFoigaJcWmDDpN+wyht5mmueX8w7KsPwdwV8p55srS0hJ27tyZtxmEAKAeiR5Qp0R1qFGiG0XS7KHxPi4EFZAiaZQUlzLoNNVXxjyLQfsA7DdN8+E088yb0dHRvE0gpA71SHSAOiWqQ40S3aBmieoUTaOMhldMiqZTEVmeIfQZFHx3EFBbRSREFahHogPUKVEdapToBjVLVKdIGnWi4d311Axuv/dFLgoViCLp1A/pV8YMw3gngF8F8BqAHwPw92zb/n9k7t0+SPozAD4i+r5areKuu+5CZ2cnNjc3sX//fhw5cgSVSgV9fX1ob2/HxYsXMTY2hoWFBdi2jbGxMczOzqK/vx8AcOnSJYyPj2Nubg6GYWDXrl2Ym5vD4OAgNjc3Ua1WMTExgUqlgs7OTgwNDWF+fh5DQ0NYW1vDyspK/fuuri4MDAzg/PnzGB4exsrKClZXV+vf9/T0oLe3F4uLixgZGcHy8jLW1tYwMTGB+fl5dHR0oKurC0tLSxgdHcXS0hLW19fr9+tWpkqlgt7eXpZJwzItLCwUrkxFbKeyl2l+fh7d3d2FKlMR26nMZfKmWYQyFbGdWKYrZZqfn0d/f3+hylTEdipzmRYXFxts1rlMx0+/ifVNG1sA1jdtPH3mAvpW57UuU5G1F6VM8/Pz6Orq0r5MQRi2bQdeUL/QMP4XgN8B8B7btn/eMIz/bNv2j8jca1nWRwD8G9M0Pyr6/sSJE/bBgwel7FCdy5cv1x9sCMkb6pHoAHVKVIcaJbpBzRLVKZJGnR1C61s2OtsM3HnbdTz3qiAURadPP/30U8eOHXu36Lsor4zN2Lb9FwCcfVPXRLj3BwDcHeF6balUKnmbQEgd6pHoAHVKVIcaJbpBzRLVKZJGnWh4n3nXJBeDCkaRdOpHlChjFwzD+DoA2zCMjwJ4Q+Ymy7JGAfw9AD8awz7t6OujAyDqQD0SHaBOiepQo0Q3qFmiOkXTKKPhFZOi6VSE9IKQbdt3GIbxnQDeg9o5Qr8neetnADxkmuZCdPP0o7293fe7U7NVnJxZxuHJAToMEpk4+gnSIyGtEkWTQddSp+VA5zGQGiW6Qc0S1aFGiQ6UQadRdgjBtu0/BvDHAGAYhmzt/CCAfx/RLm25ePEihoeHmz5vfLe0wu2EJBJx9eOnR0JaJYomw66lTouP7mMgNUp0g5olqkONEh0og04DF4QMw/gWgFEAKwCc06cNAD3bn3eFZWCa5g0t2qgVY2Njws9PzixjfcvGlg2sb9k4ObOs1WSY5Etc/fjpkZBWiaLJsGup0+Kj+xhIjRLdoGaJ6lCjRAfKoNOwQ6W/G8BRALcCeAjAMQAfBvBdAH4zTcN0ZWFB/Gbc4ckBdLYZaDOAzjYDhycHMraM6Exc/fjpkZBWiaLJsGup0+Kj+xhIjRLdoGaJ6lCjRAfKoNPAHUK2bb/o/L9hGC/btv3a9j9fNwzjh9I0TFds2xZ+7pw+r+v5CSRf4urHT4+EtEoUTYZdS50WH93HQGqU6AY1S1SHGiU6UAadRjlDaLdhGJ8G8ByAGwHsT8ckvQnaVsbT50krxNFPGbY5kvyIosmga6nTcqDzGEiNEt2gZonqUKNEB8qg07BXxtx8EcAtAP4bgL8L4LOpWKQ5s7OzeZtASB3qkehAWjo9NVvF3c9UcGq2mkr6ulHk+ki7bPSlRDeoWaI6Mhot8rhF9KAMvjRK2PkLAL4/PVOKQX9/f94mEFKHeiQ6kIZOdY9qlTRFro8sykZfSnSDmiWqE6bRIo9bRB/K4EuldwgZhvGThmH8gGEY/9QwjH9uGMYdKdpFCCGExEYU1arMFLk+ilw2QggpK/TthGSD1IKQYRgGgPcD+ACAjwD4SdTCzhMPly5dytsEQupQj0QH0tCp7lGtkqbI9ZFF2ehLiW5Qs0R1wjRa5HGL6EMZfKkR5+RswzB2Afj3tm0nEmnsxIkT9sGDB5NIKndWV1fR09OTtxmEAKAeiR6kpdNTs1Vto1qlQZHrI+2y0ZcS3aBmierIaLTI4xbRg6L40qeffvqpY8eOvVv0nfQZQtuLQBdt294A8BaAA8mYVyzm5uawb9++vM0gBAD1SPQgLZ3qHNUqDYpcH2mXjb6U6AY1S1RHRqNFHreIHpTBl0Z5ZWwewGXDMLYAVAB8M03DdKVWVYSoAfVIdIA6JapDjRLdoGb1Q9WIWknZ5U2HGiU6UAadSu0Qsm3bNgxj0Lbt4r9E1yK7du3K2wRC6lCPRAeoU6I61CjRDWpWL1SNqJWUXaJ0DlCjRAPK4Eulo4wBOOT+h2EYNyRsSyGYm5vL2wRC6lCPRAeoU6I61CjRDWpWL1SNqJWUXaJ0qFGiA2XQaeiCkGEYzi6iT7g+awPwr9MySmcGBwfzNoGQOtQj0QHqlKgONUp0g5rVC1UjaiVllygdapToQBl0KvPK2H8wDON7AAwbhvGPARgAbAD3pGqZpmxubuZtAiF1qEeiA9QpUR1qlOgGNasXh8b7cOdt1ykXUSspu0TpzM+vJGwtIclTBl8auiBk2/YXAHzBMIx/YNv2/87AJq2pVqsYHR3N2wxCAFCPRA+oU6I61CjRDWpWP1SNqJWUXd50qFGiA2XQqfQZQlwMkmNiYiJvEwipQz1GR9UoH0WGOo0HtZodWWs0y7aljuKher3RrxKVOTVbxcNzHcr2n6io7g9IfMrgS0N3CBmG8QKAowDOAqgC2EJtIWmHbdvd6ZqnH5VKBVNTU3mbQQgA6jEqqkb5KDrUaXSo1WzJUqNZti11FA8d6o1+laiK03/WNm38r2/NKdl/oqCDPyDxKYMvldkh9C7bts8B+A4A79z+u3n7j3jo7OzM2wRC6lCP0VA1ykfRoU6jQ61mS5YazbJtqaN46FBv9KtEVZz+Y0Pd/hMFHfwBiU8ZfGnogpBt28vb//0b27ZftW172rbtl2zbfjZ98/RjaGgobxMIqUM9RkPVKB9FhzqNDrWaLVlqNMu2pY7ioUO90a8SVdGh/0ShaOUhjZTBlxq2bctdaBjfB+BzAHahtpDUb9v2WBJGnDhxwj548GASSeXO9PR04beVEX2gHqNzaraqXJSPokOdxoNazY6sNZpl21JH8VC93uhXicqcmq3i+OkzuOXGfUr2n6io7g9IfIriS59++umnjh079m7RdzJh5x1+AMBPAVgA0AlgRwK2FY4yrCISfaAeo6NqlI8iQ53Gg1rNjqw1mmXbUkfxUL3e6FeJyhwa78Oe7gns3KluH4qC6v6AxKcMvjTKgtDjtm3/ZWqWFIS1tbW8TSCkDvVIdIA6JapDjRLdoGaJ6lCjRAfKoFOpBSHDMNoAzBmG8ZsAHgVgABiybfs/pWmcjqysrORtQqKUbQtkXuVNK9+i6VEHytZnkiArnbJtSFziapSayxbW9xU4/qsNtZqcRlupS93bQUX7RTapaKcsZfClsjuEbNSii10CcCuAbtReGeOCkIeJiYm8TUiMsoVRzKu8aeZbJD3qQNn6TFJkoVO2DWmFOBql5rKF9d0Ix391oVZrJKHRVupS93ZQ0X6RTQCUszMKZfClMmHnYdf4Htu2P2Pb9mdt2/5e27a/K2XbtKRSqeRtQmKULYxiXuVNM98i6VEHytZnkiILnbJtSCvE0Sg1ly2s70Y4/qsLtVojCY22Upe6t4OK9otsUtHOKJTBl0otCAGAYRgf9/z7g4ZhPG0YxhOGYXxb8qbpSVdXV94mJEbZwijmVd408y2SHnWgbH0mKbLQKduGtEIcjVJz2cL6boTjv7pQqzWS0Ggrdal7O6hov8gmFe2MQhl8aZSw808BGAVwDsA/BPDLAP4zamcK/bJt2z8S14gihZ2/dOkS+vv78zYjMXR+5zMORTtDqGh61IGy9ZkkyEqnbBsSl7gapeayhfV9BY7/akOtJqdRniGklv1FO0OoKL40KOx8lAWh/4Za6PkBAF8AcBTA37Jt+7JhGL9g2/bPxDWwSAtC09PTmJqaytsMQgBQj0QPqFOiOtQo0Q1qlqgONUp0oCg6DVoQkn5lDMATtm1vohZhrA9A+/YfAPS0ZmJxGB4eztsEoiCnZqu4+5kKTs1WM82XeiQ6QJ0S1VFBo3HHkbzGH11Ion5UrGMVNJsGrdS1iu1UZnTVaNF1VPTyRUVXnUZBNsoYAJwxDON5AG8BuAvATgBfNgzjIIBvpWCblqysrGBwcDBvM4hC5BkFgHokOkCdEtXJW6NxxxEVo9CoRBL1o2od563ZNChzRKkioqNGi66jopcvDjrqNCrSO4Rs277Xtu0bbNv+Dtu2/yOAHwbwue3//lhK9mnH6upq3iYQxcjzdH3qkegAdUpUJ2+Nxh1HdI/ukjZJ1I+qdZy3ZtOgzBGlioiOGi26jopevjjoqNOoRHllDIZh3LQdXezDAP6rbdubtm1/a/tVMgJgYmIibxOIYuR5uj71SHSAOiWqk7dG444jukd3SZsk6kfVOs5bs2lQ5ohSRURHjRZdR0UvXxx01GlUohwq/dsA3oHaq2LzAF61bfufJGEED5UmRSev0/WpR6ID1ClRHRU0Gncc0Tm6SxYkUT8q1rEKmk2DMkeUKhq6arToOip6+aKiq069BB0qHeUMoQXbtt9rGMa/tW375w3D+KWE7CsUPT08X5s0c2i8LxenSj0SHaBOieqooNG440he448uJFE/KtaxCppNg1bqWsV2KjO6arToOip6+aKiq06jEOWVsTHDMLoAtBuG8UEAb0/JJq3p7e2t/3+ap7TzBPh4lK3e3HqUpWx1VDR0bL/Xq4Z2NpNgdNRhEHF8ad4UrQ2iUJSyxymHc8/rVSOR9Eg2lLFtdPSrIorYdkUsU1yKotMgouwQ+m0A+wD8FoDfB3BvKhZpzuLiIgYHB1M9pZ0nwMejjPXm6FGWMtZRkdCx/U7NVnHHg29g04Y2NpNgdNRhGFF9ad4UsQ1kKUrZ45TDfU+7AXyp78ov/UWplyJS1rbRza+KKGLbFbFMrVAEnYYRZYfQaQAjAP4OgL8C8LdSsUhzRkZGAKR7SjtPgI9HGevN0aMsZayjIqFj+52cWcbmFrSymQSjow7DiOpL86aIbSBLUcoepxzuezZtNNxTlHopImVtG938qogitl0Ry9QKRdBpGKELQoZh/J5hGPOoHST9/wL4vwAMAXgwVcs0ZXm51mnSPKWdJ8DHo4z15uhRljLWUZHQsf0OTw6gow1a2UyC0VGHYUT1pXlTxDaQpShlj1MO9z0dBhruKUq9FJGyto1uflVEEduuiGVqhSLoNIzQKGOGYXQA+ByAawB8ybbtmaSNKGqUsTRPaecJ8PEoW73FORm/bHVUNHRsvwdOvoRZu18rm0kwOuowCB2jjBStDaJQlLLHKYdzz7hxCbcevrbl9Eg2lLFtdPSrIorYdkUsU1yKotOgKGNRws4PAviJ7X9+2bbtpWTMK9aC0OXLl9Hd3Z23GYQAoB6JHlCnRHWoUaIb1CxRHWqU6EBRdBq0ICR9hpBt2xdt2/5ZAH8M4K8Mw/hCUgYWiUqlkrcJhNShHoNhFAU1ePS5M4m2g2y7ylxHjRCAvrQolKk/U7P5E6S3MmnRD2qU6EAZdCodZWx7h9BPAvg8gGcBPJWWUTpThtB0RB+oR38YRUENTs1W8atPXcKGvZxIO8i2q8x11AhxoC/Vn7L1Z2o2X4L0VjYt+kGNEh0og05lDpXuMwzjZwC8CuBWAN9t2/YHbdt+IHXrNKSrqytvEwipQz36wygKanByZhkbCbaDbLvKXEeNEAf6Uv0pW3+mZvMlSG9l06If1CjRgTLoVOaVsT8E8EUA/xPAp23bvj9dk/RmaSmxo5UIaRnq0R9GUVCDw5MDaE8wyphsu8pcR40QB/pS/Slbf6Zm8yVIb2XToh/UKNGBMuhU6lBpwzC6AHw7gPcCuAm1sPNLtm3/YBJGFOlQ6Wq1ir6+8m37JGpCPQbDKApq8NT0PF5Y3EisHWTbVeY6aoQA9KVFoUz9mZrNnyC9lUmLflCjRAeKotOgQ6WlzhCybXsNwDe2/wAAhmHsTca8YrG0tFQI0ZBiQD0Gc2i8r7QTMZWY7FzDu759T2LpybarzHXUCAHoS4tCmfozNZs/QXorkxb9oEaJDpRBp9KHSnuxbftskoYUhfX19bxNIKROmB75C1X6sI7Dod8kblTsM9Qo0Y0kxn+V+uKp2Srue/E8AAMfu26Xb7AAVewNIms7VasXpy0vLS/jk+1DpayDpPErX1LlLnr9BVGG8T/2ghARMzExkbcJhNQJ0iOjXKQP61gO+k3ioGqfoUaJbrQ6/qvUF0/NVvGFe17A+lbt33/xwnl86ePXNT34qmJvEFnbqVq9eNvysZkXm9oyjTxVqoOk8StfUuUuev2FUYbxX+ZQaRKBSqWStwmE1AnSI6NcpA/rWA76TeKgap+hRolutDr+q9QXa9Eor/x7Q2CPSvYGkbWdqtWLTFumkadKdZA0fuVLqtxFr78wyjD+c0EoYYr+jiHRiyA9MspF+rCO5aDfJA6q9hlqlOhGq+O/Sn3x8OQAOlxPLB0Ce1SyN4is7VStXmTaMo08VaqDpPErX1LlLnr9hVGG8V8qyljaFCnK2OLiIoaHh/M2gxAA4Xos8zvBWcE6Dod+k7hRsc9Qo0Q3khj/VeqLPENIn/xk7LnvxfO4fPkyPvH2PaWsg6ThGULpUZTxPyjKWGYLQpZl3QTg8wBmAPy+aZrfcr4r0oLQ9PQ0pqam8jaDEADUI9ED6pSoDjVKdIOaJapDjRIdKIpOWw473yqWZX0fgH8E4LOmaZ7JIs+8GBsb8/0u7upqmVdlSWsE6TFrWtUx+0FyxKnLNOtfpFOd9UKtBpNX/YTl67cD4dRsFd8814Z391QL0Z5J1r83LWpfHVQa/wkRkZZG8x5jBrs7cPHyRqa7clSY8yRVbtUogy9NfUHIsqwbAZgA3m2a5rm088ubhYUF7Nixo+nzuCe0l/1kd9IafnrMmlZ1zH6QHHHqMu369+pUZ71Qq8HkVT9h+fpFMQKA2+99EWubNv7wr89r355J1r83rc8d2YvffPwsta8Iqoz/hPiRhkbzHmPWNm3YAAwAXe3ZRPZSYc6TVLlVpAy+NIsdQv8JwG8ELQZVq1Xcdddd6OzsxObmJvbv348jR46gUqmgr68P7e3tuHjxIsbGxrCwsADbtjE2NobZ2Vn09/cDAC5duoTx8XHMzc3BMAzs2rULc3NzGBwcxObmJqrVKiYmJlCpVNDZ2YmhoSHMz89jaGgIa2trWFlZqX/f1dWFgYEBnD9/HsPDw1hZWcHq6mr9+56eHvT29mJxcREjIyNYXl7G2toaJiYmsLi4iK6uLnR1dWFpaQmjo6NYWlrC8RcuYn3TxhaA9U0bj79yDn2rbaFlemquvd7J1rdsHD99BpNd45mWqVKpoLe3t6lM6+vr9e91a6cylWlzczP3Mj15Zv2KjjdrOn7bzquly/TEq2/53l+UdspKe8dPn2nwRU+fuYC+1fnAMnnveXL6PIa3LiZWpsXFRfT29ibm956e62i6f2/vnkza6aGXqw11deLlWfSttlN722V6Ysa+Uj/bbTO8NZR6mR5/ZbnBhzz03FlcMzRVL9OJl5fqi0HYtu2bry+gWq21p+3pL7q20zdnbF9fGrVMj754riGt+1+YbWjbR154E32rXcpoT6d2SqJMi4uLGBwcLFSZithOZS7TxYsXMT09nWiZTry81OCXHn7uDRwY2Jt6mY6ffrM+VgCo5//YSxXs6R6JXKanZo0mX33N0AFhO514ebHh2keefxNT/Xsy0d43Z9vqebvLLfucq0N/WlxcRE9Pj/L9KaxMQaR6hpBlWZ0ALgH4WQBXbf/9iWmaX3FfV6QzhFZXV9HT09P0eePqrRFzh5D8fYQA/nrMmlZ1zH6QHHHqMu369+pUZ71Qq8HkVT9h+Xp3CHW2GQ07hIrSnknWvzetxh1C+teV7qgy/hPiRxoazXuMcRZH2gB0tsfPP0o5VJjzJFVuFSmKL83tUOntg6SfBXCTaZp/bVnWPgBPAvgF0zR/zbmuSAtCQQdP8QwhkjUqHYSm85kwRUO1M4REOtVZL9RqMHmf7xDnDKHjp8/glhv3FaI9eYZQOVBp/CdERFoazXuM4RlCxfL/RfGleS4IHQRwGsBO0zSXtj/7XdTOE7rJua5IC0Lnz5/HyMhI3mYQAoB6JHpAnRLVoUaJblCzRHWoUaIDRdFp0IJQW8p5vwxgA8B1rs8WUDtzihBCCCGEEEIIIYTkQKoLQqZprgP4HQD/2rKsDsuyOgB8BMD/SjPfPLl06VL9/0/NVnH3MxWcmq3GSqvV+8PSSCL9pPDaopJteeOui6j14tZjWjaR1sijLrPOMyy/qH4z7Brd9BnX3qj3teJL8iQvW935yvjSNO0smuZJ+qQ1/mdBGnNX9pHs6kC2/U6eXcy1TWTrI4l5iU4UqSxJoLMvlSWLKGNfAPArAL4J4DyA+wD8Qgb55sL4+DgANcImB6WhUmhkhq71x1037cYMAAObtny9OHpMy6ayt0+r5FGXWecpk18Uvxl2jW76jGtv1Pta9SV5kVd7evP9uY/uR9AJAmnaWTTNk2xIY/zPgjTmruwj2dWBbPtdGYeWc2kT2fpIYl6iE0UqS1Lo6kujkPYrYzBNc9k0zR80TfPbTdM8Zprm7aZpbqadb17Mzc0BAE7OLGN9y8aWXQu/enJmOVI6rd4flkYS6SeF15ZHXrugjG15466bjS1gI2K9OHpMy6ayt0+r5FGXWecpk18Uvxl2jW76jGtv1Pta9SV5kVd7evN9/JVgX5qmnUXTPMmGNMb/LEhj7so+kl0dyLbfxhZybRPZ+khiXqITRSpLUujqS6OQ+oJQ2TCM2vFIhycH0NlmoM2oha89PDkQKZ1W7w9LI4n0k8Jry9EDO5WxLW/cddPRBnRErBdHj2nZVPb2aZU86jLrPGXyi+I3w67RTZ9x7Y16X6u+JC/yak9vvgd3deVmZ9E0T7IhjfE/C9KYu7KPZFcHsu1XG4eQW5vI1kcS8xKdKFJZkkJXXxqFVKOMyVKkKGNvvfUWduzYAUCNsMlBaagUHpaha/1x1wWASPXi1mNaNpW9fVolj7rMOs+w/KL6TZnw4TrpM669Ue9rxZfkSd4hhA9PDuDAgBHqS9O0s2iaJ+mT1vifBWnMXdlHsqsD2fZbXV3F84vrubWJbH0kMS/RiSKVJQl09qVucgs7L0uRFoSmp6cxNRV00gAh2UE9Eh2gTonqUKNEN6hZojrUKNGBoug0aEEoi0OlS8Xg4GCs+1pZjS3Lr8R+cCXbn7h6JPkjs2tOF+2H2Smr0yz9JEkW3XeBujUaxfYkf4FOkjTyS7sMTvqD3R24eHmjZS3prskw0h7/49RXVhoJmt8WrZ3TopV6uuf0PB557QKOHtiJj9846pv2Nf1dgYf1J0Urz0lBviFpLeW5y1R18rS/DM9SXBBKmM3N6Odlt3Kie1kizfjB0/CDiaNHkj8ykfcAaKF9mT4qo9Ms/SRJliJEknQ0GkVLSUaxSZI08ku7DE76a5s2bAAGgK72+FoqgibDSHP8j9PeWWkkaH7LsUCOVurpntPz+PKjZwAAT71RO5DYvSjkTrvDMPBLA4NK+TtZ35C0lvKMVKk6edtfhmcpHiqdMNVqNfI9rZzoXpZIM37wNPxg4uiR5I9X16LIe7poX8ZOGZ1m6SdJssjoWXUcjUbRUpJRbJIkjfzSLoOTvnPIgY3WtFQETYaR5vgfp72z0kjQ/JZjgRyt1NMjr10I/HdjO6nn72R9Q9JaSlObuus+b/vL8CzFBaGEmZiYiHxPKye6lyXSjB88DT+YOHok+ePVtSjyni7al7FTRqdZ+kmSLDJ6Vh1Ho1G0lGQUmyRJI7+0y+Ck78R6aUNrWiqCJsNIc/yP095ZaSRofsuxQI5W6unogZ2B/25op3b1/J2sb0haS2lqU3fd521/GZ6leKh0wsQ9eIpnCMVH9/di06QoB6GVkTKdISSrU54hpC+6n9fi1ijPEMouTVH6PENIjrTHf54hVGyyOENo3LiEWw9fm5TJvvAMIf11n6f9RXmWYpSxDHnzzTexZ8+evM0gBAD1SPSAOiWqQ40S3aBmiepQo0QHiqJTRhnLkKGhIQDi1eX7XjwPwMDHrtsFIP7OHJlV0ji7gHRfPSY13O04ta3HKPd4216nX0CSJE87k94NlEdZopRhZr0Lx5+pZKaxqD40Tn27/X1Su0iCrlWlX0Utu/u+NOxPKt0hSV8qa0fa7ajq7heddiapWoeytKpZNzJzBO/OraTzCbomz53vuukib9xjxNF9vRA9Zkdpz6K99SBDlprL8vkga9z2v7qw4rurLUlfqircIZQw09PTqPaMuk5DN/C5I3vxGyfOYH2rdk27AbQZTvQDo4VoOeJ7GyMtAFciLfjnJZMuUR9vO37+nf2h23GD2j5pXeiiszztFOUNILY9eZQlShlOzVbxhXtewKaNTDQW1YfGqe8v3PNC3d93thn40sdlI1EF5+V3rSr9KmrZ3felYX+S6bayZdxrR2PUmuTbUTa/rEmjnbPSjip1GIWkXnOQmSM0Rn+LVz9xfTOAyHPepFDF9+qCd4zoMIBf/sT1vmN0WHvGed7RnSw1l+XzQda47TcAbLqWQ378A/saFoXK8MoYD5VOmKGhIeEJ9RtbV67ZtONH95I5aV0m0kKcdIn6eNtxeiV8E2BQ2+sURSFJ8rRTlHcr9uRRlihlODmzjM0tZKaxqD40Tn27/X1YFJUoeQXVoQr9KmrZ3felYX+S6bbyC6FoTpBmO8rmlzVptHNW2lGlDqOQ1K/aMnMEb/S3OPUT1zfHmfMmhSq+Vxe8Y8SmjcAxOqw982z7vMhSc1k+H2SN2373YhDQHBmvDDuEuCCUMGtra8IT6jtcNd1uxI/uJXPSukykhTjpEvXxtuP1O9sj3+Nue52iKCRJnnaK8m7FnjzKEqUMhycHEo12GFbeqD40Tn27/X1HyP1R8gqqQxX6VdSyu+9Lw/4k011bW0vMjrSj1sjmlzVptHNW2lGlDqPQimbdyMwRvNHf4tRPXN8cZ86bFKr4Xl3wjhHtbQgco8PaM8+2z4ssNZfl80HWuO1vNxq/80bGS8qXqgxfGUsYZ1sZzxAieeFux77V+ZajN/EMIZ4hFIcoZXjg5EuYtfsz0xjPEEqPop4h1OqWcZ4hJLZL1TRF6apSh7Ik+ZoDzxBqzWZyBfcYcdPAZeGxBjxDKBieIZQMsmcIleGVMS4IJczly5fR3d2dtxmEAKAeiR5Qp0R1qFGiG9QsUR1qlOhAUXTKKGMZUqlUfFcR46ykZvmraZRf1YF8VuF1X43OCqeexo1L9V9fWtk1kcQOBtH3QOs6UlUTSe4KbMWGqL/cJrG7JiqPPncm0R1CfoRpL28tqbYrLew6QN1fY5O2M2hsT5uoukhSR2lrstX0496v+k67JMhTs1FotS1U1+g9p+d9dx6kkV8SNqSNd46q2i6UIvmBNClLPeniS1uBC0IJ09XVJfy88TT2itRp7HHukUGULoDAvBpP8p/BlZP8k7Mrjt1FdkBxcddThwFMTFQByLev9/so9R52bdI6UlUT3kgaf/b8vCuyYDZ2iqO/JNd+SZXj1GwVv/rUMjbs5VTrJkx7QHAfSZs8tSybtwrjgAxp2Ok3tqdNVF0kqaO0Ndlq+nHv97tP1fEkLnlpNgqttoXqGr3n9Dy+/OgZAMBTb9QO3Q1akEmjPFFtSBvvHHWla94VwS/+/DMN+4rgB9KiTPWkgy9tFR4qnTADA+JDteKcxp5V9AxvlAZVT/LX/UT7rGhoq+0IDlHat5VIAlnrSFVNnJxpjqSRdZ9x6iZK9JdWdNKKnRsJRhkLyidIe3lrKc/8ZfNWYRyQIQ07/cb2tImqiyR1lLYmW00/7v1+9+XtA5ImL81GodW2UF2j3mhF3n8nnV8SNqSNd44aFMEvjz5ZND+QFmWqJx18aatwQShhzp8/L/w8zmnsWUXP8EZpUPUkf91PtM8K78n5Udu3lUgCWetIVU0cnhxILLJgKzZEjf7Sik5asbO9DanXTZj28tZSnvnL5q3COCBDGnb6je1pE1UXSeoobU22mn7c+/3uy9sHJE1emo1Cq22huka90Yq8/046vyRsSBvvHDUogl8efbJofiAtylRPOvjSVuGh0glz8eJFDA4OCr/jGULp2E2acerp2sE23HzN7obPeIZQNvAMIXmefOUcXrq4xTOEeIZQYiRtZ9DYnjY8Qyj5+8twhlCemo0CzxBKNr8kbEgb7xyVZwjpSVnqSRdfGgajjGXI7OwsxsfH8zaDEADUI9ED6pSoDjVKdIOaJapDjRIdKIpOGWUsQ1ZXV32/S2uFPmgXQNart0nnl9evh1kSd0eGzH3HTy/iFvQDiP8LeVZtoPqvfEA6fbiVXTxR7olqTxLtDTTqzi/tIL/ZCqr5jyx2Jaj8a6qMbrOqC+93YTuK3BrVvb1k7Uh6901aiPLz+uo0bcpyJ3eU+zaqS+iYsUP9bys7gMP+Had8raQZlzT6dJLjc5Qdj2nvBmqlrrz3/k1lGQ+4NBp2n7dO09CGs7t7cWUDw72d+Nh1u2Ltlo4zF5K1zdl5/urCCv7s+fMY6evEzXsHA/WW1i6sOM8w3nLE6f9hn8v0P9lypzVHVQnuEEqYy5cvo7u7u+lz9yn/APDjH9iXiKN2TnlvjCRkCKLmGKmfAN944nzr+bWaXtL2pEGYjX7fS9+3aaO9DbgSZSdaPWTVBmm3VRLpp9GHg/pv0AAW9Z6o9iTR3u0G4Nbd547sdUUSaUzbz2+qUpY0/VmS+eTh86L28SDdZlUX3u/c2vTq1rnP0aju7SVrBxBv/pB1mUT5vbqw0uCrP3XTbnzt1FwqNqVV3rjp+vUzP/8bJZ+gfhPm42XLF5ZHGnpKo08nOT4HjavedNN61hDZ0up88nNH9uK/PH4WGzHHjjS0cWq2MUIsUDsf50sfl5ubi76PMheKYlsbgC3PNX56izIeJvmM4De2uMvhrl/Z/h/mP2T6X5RypzFHzYOgHUI8VDphKpWK8PO0Tvl3TnkXRRLK+gT4pPNrNT0dTsAPs9Hve+n70FqUnazaIO22SiL9NPpwUP9N8p6o9iTR3l7dBUUS8fObraCa/4jbl/O0Ock8ZXSbVV14v3Nr089fOhrVvb1k7YhrmwrzjiZfPe3ve9LIP890/fqZn/+Nkk9Qvwnz8bLlC8sjDT2l0aeTHJ+DxlVvumlHFGulroRtuxl/7EhDGydnGiPEArX6lp2bi76PMheKYpt3MQjw11uU8TDJZwS/scVdDnf9yvb/MP8h0/+ilDuNOapqcEEoYXp6eoSfp3XKv3PKuyiSUNYnwCedX6vp6XACfpiNft9L34fWouxk1QZpt1US6afRh4P6b5L3RLUnifb26i4okoif32wF1fxH3L6cp81J5imj26zqwvudW5t+/tLRqO7tJWtHXNtUmHc0+eopf9+TRv55puvXz/z8b5R8gvpNmI+XLV9YHmnoKY0+neT4HDSuetNNO6JYK3UlbtvwCKNRNd1q+To8T8YdgrSjzN2jzIWi2CZ6gPfTW5TxMMlnBL+xxV0Od/3K9v8w/yHT/6KUO405qmrwlbGECTqJnGcIZZ+eKuczBJHmGULfeG0e7zlQ01rceuAZQlfgGULR7gfk3ptPK4KDav6DZwjpe4aQW6O6t5esHTxDKH7+eabr3Ndlr2PN6Az1vzxDiGcIxbWl1fmkbIRRniHUaBvPEMr2DCFGGcuIIi0ITU9PY2pqKm8zCAFAPRI9oE6J6lCjRDeoWaI61CjRgaLolGcIZcjIyEjeJhBSh3okOkCdEtWhRoluULNEdahRogNl0CnDzifM8vIy+vv7hd/JbINrZUtvklu+s8SxsXp5Ey8vrODogZ24eldvpq8WRE3Xry3DtihGtTnu62QOQXqUJevXI/LWrHsr67UjvXjp/FsQbWvNm7RfZ0rS56Sl06g2ApDaCu6Xjt8W51ZR8RWkpMeisHtVfz3Jq9E0X2uR1ZoO/jQKXt978fJGKq/FytqiSr3F6TenZqt45IUZHL1+T+avyCX5Cpr3uiT0IOpfsq8JxUWVV+dlyOr1ylcXVnD/87M4dsN4/dU20eturTzbtPqapEgXQPPrX2nNDaKQpXZa7Y95vBbqJuprlUk8S6kOXxlLGL9tZadmw0PpAeIwr957ZcPn+aWnEo7dlzcbddjRZmBzK5vwxCJ7otS105ZhYQ6j2hx2vUx6rW5zTLKe4+o464cAb8hRh8625tCjeZF0Pcn4p7g+R/RZEjqNqqd2A9iyAberkW1Try6S1ELWfayVdFrpw0H3xrU7S3/h1mic/iKLrNZ08KdRCPK9SYTujmqLKvUWp984n69t2onXWxLzEr9rw0JMJxHKXdS/fvh9e/EbJ84gLNR4XGTrRAXdpWmDO20DjWPxj39gHwDgy4+eafjs6l29sZ9tWhnHnPu9PqndANqMxhDybu3kNU/MUjut9sc0x08Z7jk936SzsEUhvjJGIjMxMSH8/ORMeCg97zUnZ+TDgoqukbkvbxwbvWyEhA1Mq2xx6tppy7Awh1FtDrteJj0/PcqSZD3H1XGWnJxpDjnqIAo9mhdJ15OMf5KxIa4fiqPTqHra2GqcgALyberVRZJayLqPtZJOK3046N64dmfpL9wajdNfZJHVmg7+NApBvjeJ0N1RbVGl3uL0G+fzNOotiXmJ37VhIaaTCOUu6l+PvHZBKtR4XGTrRAXdpWmDO23vWPzIaxfwyGsXmj5r5dmmlXHMuc6ri027OYR8WnODKGSpnVb7Y5rjpwwinYXR6rOUDnBBKGEqlYrw88OT4aH0vNc4rzj4fR6UflB6KuHY6KUjJGxgWmWLU9dOW4aFOYxqc9j1Mun56VGWJOs5ro6z5PBkc8hRB1Ho0bxIup5k/JOMDXH9UBydRtVTR1vt1z03sm3q1UWSWsi6j7WSTit9OOjeuHZn6S/cGo3TX2SR1ZoO/jQKIt+bZOjuqLaoUm9x+k39cyRvfxLzEr9rw0JMJ6EHUf86emCnVKjxuMjWiQq6S9MGd9resfjogZ04emBn02etPNu0Mo4513l10W40h5BPa24QhSy102p/THP8lEGkszBafZbSAb4yljDnzp3D7t27hd/xDCExPEMovi1h3wfpURaeIcQzhNI+QyiuTnmGUHpp8QyhRrwa5RlCycMzhKLbEtTXHnupgvdfO8EzhAR58gwhf7I8Q+iBF87h1ut38wyhBOAZQvJEPUMoiWcpFWDY+Qy5cOECdu7cmbcZhACgHokeUKdEdahRohvULFEdapToQFF0GrQgxChjCbO0tIQ3L3cKV05PzVbxa49O442lNYzs6MR3XDXYsJrcygppEjtPvL+ki/4/CVvvOT2PP3v+PLo6DOzf2Zvairp7Bdtvl4f3GtGvQ1FWwltd5W711wwvT0/PY/a1Vd92TKMMYSvvre48cbdDWJn8NO2n46i/Egbpx51fmJ1hyPxCltWveqK8ZH8xFrXdYHcHXp+dxy03dgp//W7ll7ek+pNX00n7atHOCJFuRPX+B89WcHbpMvYO9eDmvYNSv9YlsbMkr1+y8/pl0T22R8krjn1J39PKjo2o1wbdH9SPADTtFJb55dbPJtnxWta/xPFFot3PccoUlr7fnG3cuIRbXQ8xrc7bvvrX5wAD+OS37a7v4k5rh6rfNVntxFBhp46IpOxy98Wrd/UKd0zF3QEia+M9p+fxtWffxJ5dC/jUO8ZTn1eLyuKnKec5ZaSvE596xzgANIy1Inu9zzZBY3ncMmQxh5R5HsrrOTUtwvJaWloqxIJQENwhlDBPTc/jjgeaI0597she/NqjZ+CtbedEeiB+RLBTs61Hr3LnX3u3t3aKvvv/RddGtdV7uru7DpLenus+BV+Ul9817usASJ+mH7Ud/GyOGxFBlN5P3fsiNrbE7ej3kNdKGcJO75dJP0if7naovbftXyZ3OjI69kaLAIK1GaQfdyQK2br3I6y/OranFaXBm783r7C8vfXkbjvn8Hi/SIKtRPZKqj95Nf2pm3bja6fmEvPVAJoimYj0Lar3X3/sTNPhnGERP+L2Qe+EMcuoIH52ZRmdxBnbo+QVx58mfU+U9Fq9FvCfGwT1I8dHrm81ilkm+ovIJtnxWta/xPFFji3eCKpRyxSWftCcraPNwC+1OI8AxPO2jjYDWzHHtKCyBPmktCI9xrEnD5Kyy9ue7caVQ54722pR12Qi57Zio9eGjjYDvxwzmqKMPaKyABBq6tWFlab6sW3Afb60115RHwHk5qqyZUjy2QIQzyFlnofyek5Nqw/K5FWtVtHXl78PaBVGGcuQp6YXhaevP/LahaZOBlw5kf7kTPwT4qPeK7re/dnG1pVT9N3/H/WEfxGi09zTOJXfsdFb5+68/K5xX+e9Jug0/VbqJej+uOmenFnG+qZ/O0axQZaw0/tl0g/Sp7sdwsrkp2k/HUeNNBKkH3ckCtm69yOsv6YdpSEsr7C8g9ouLJJgK9E7kupPTZqejl/Xfm3p1Z1I36J69y4GOfe22sdF1ziTpruemsGvP3YGa5vZR8PJUvdenLE9Sl5x/GnS90RJr9Vrg+4P6keO1r3IRH8R2SQ7Xsv6lzi+yLHFS9QyhaXvHWMa/n+z9XmEn82tjGlBZUmivVql1XlQWiRll7c93eOIE3VNth/FtdFrQyvRFGXsEZXFT1Oi+vEGQPTa69evZeaqsmVI8n6/sVTl59S0kMlraWkptfxVgQtCCXPtkCE8ff3ogZ31z9w4J9Ifnox/QnzUe0XXuz/raLtyir77/6Oe8C9CdJp7GqfyOzZ669ydl9817uu81wSdpt9KvQTdHzfdw5O1CAl+7RjFBlnCTu+XST9In+52CCuTn6b9dBw10kiQftyRKGTr3o+w/pp2lIawvMLyDmo75zMD4gg6rUTvSKo/NWl6Kn5d+7WlV3cifYvq3Rupxbm31T4uusY9adqya34lDb0FkaXuvThje5S84vjTpO+Jkl6r1wbdH9SPHK17kYn+IrJJdryW9S9xfJFji5eoZQpL3zvGuP+/vQ0tzyP8bG5lTAsqSxLt1SqtzoPSIim7vO3pHkecqGuy/SiujV4bWommKGOPqCx+mhLVj/dh2WuvX7+WmavKliHJ+/3GUpWfU9NCJq/19fXU8lcFvjKWMJcvX8bLFzZwcoZnCPnBM4TCbfbeHzfdk2cXcWr+sm87plEGniHEM4T87vc7Q2ixehnv3LdTuF2cZwipcYaQ6HUtFaI/ZXXOgHtsj5IXzxC6As8QyvYMoUOj3Ti8d1h4fZx5G88Qyp+inSH0f56bw2h/N88QkixDFnNIniHUnNfly5fR3d2dqg1ZwChjGTI9PY2pqam8zSAEAPVI9IA61QNVH5KygBolukHNEtWhRokOFEWnjDKWIX19fcJfbby/jAf9yuG3a+H1C6tYWt1oWJ0O2wEhSk+EzK8Bsg8DMjtzgtJr5ZcJ5373r+1uG5w68v5iF2Rzq/bEIWjl/uLljdBdMs71bRs2HlusSO2gkdGh38430e6GKDsPwn71i9sGcfNyXwPAV09B/cz7C5NM/nF/5U/yQT2oX3ptd35lfNuuXvR1t8f2DbsFh/VF8Td+7eXXRtMLq3huvoqDo32Y2tUj3G0CBO/OCbJDph8kicw4IHNvFFtF+k6KOL/oiu6X2e0qa8vUjg7EmQ5G0VSYn/Mre9B9Mn4oqF7S3nkYZUdm1LRl2l1m91/Q+JvWLrWwPEVlGOruwNLljXpZ3rjcgcee8R//vfUUZPtXnngDj0xfwNGpnXj/gZ0t+Zs4u3zC5tVJtUMcXypbpqx2C8qkBQQ/h7Rqw1eeeAMPvLyAyYFufN97rvK9zzmoN2x+Ezamt7oL2A93Oq8urDTtfpep07Bd81HsTWu3Z5zr4xC3LuI8A0TdwRr0fREOlA6DO4QS5omXZvDzD89ifetKtAd3JJ2Ottr5C+4T/d2REkTb8r2Rj4DaO50/8r4rEVb8Ihl50wuKKBMUUUAmHVFaDmHl9NobJ7qBk643Yo+DE/nJe9CjE+1EZHMr0RbiItKA6PR/v+gFgFxktKA2DbPBHT3Pq88okdi893t14r4nahvEzcutH+fdetHhve77vXn9/UNj+INvnatf6/TXoPyjtEfcKEJhBPVLbzSOT35bYxllo1uJ+tkXPzSO9147GWqHKM2g9hK1kTfqDwB0tzdGrPL6U5lIaqJIYWn7CifvoGh6UfqIbFQpA419wi9CTCvliRIVxs+vhUXMlJlQOmm5IzZFLYuMpvx8bFAfDIuE6Y2WI/JD7oiIafoWUd14+4yoPeOmLdMnZCIIAhD6LfcYmHSkOz9fKfIpftGNPnXTbvzRqTlsSMz9wmz/yhNvNPj6dqN2WG4cfxMnUpioPb0RKpNohzi+VLZMcfpSWmN7uxH8HNKqDSK9/Monrhfet7i4iJm1rsD5jV/9hj1HtFpvQWPej39gH67e1Rtap14fLIoyGPX5Kup4nfRcIC5hUYj97ADkoz3LpBM0j/P7fnFxEcPDw8K8dIJRxjLk6bNLTZEfvNF1vCf6n5zxjwgiinzk3OeOsOJ3ir03PXde3jzDIv7InPjuTUu2nF5740Q3cO4X1RdwJfKTFyfaicjmVqItxEWkAZF9ftELZOswqE3DbHDSFOkzLLJLkL5FkSbiaiJuXu5rNm3xYpD3/qa8pi80XRuWf5T2iNM3ZQjql17bvWUMa5cg3/D02SUpO0RpBrWXqI1EuDUu8qcykdSi9IMkcddV1GgmUbTjvtbbJ5KM+BPU30U6DPJrYREzZW3ZshsjNkUti4ymwsYav7IH1Zcoko/XD7kjIqbpW0R1EyWqY9S0ZfqETARBP7/lHgOTrqOwPIPK0FCWkEiAsu3r9fWb2wfLx/E3cSKFidpTNBdptR3i+FLZMsXpS2mN7WHPIa3aINKL330XL14Mnd/41W/Yc0Sr9RY05j3y2gWpOg2LvBvF3rjjddJzgbjErYs4zwBB6fiVMej7ixcvxiy1PnBBKGHee/VYU+QHb3Qd74n+zlZDQBxFxRuBxrnPHWHF7xR7b3ruvLx5BkUUkElHlJZsOb32xolu4Nwvqi/gSuQnL060E5HNrURbiItIA24bwiJtydZhUJuG2eCOnieKkBSmNT99iyJNxNVE3Lzc17QbEEZy8t7flNfUzqZrw/KP0h5x+qYMQf3Sa7u3jKJIYaK0Rf3svVePSdkhSjOovURt5MWxO8ifykRSi9IPksRdV1GjmUTRjvtab59IMuJPUH8X6TDIr4VFzJS1pc0AOtpbi+4iEzUuyM/5lT2ovkSRfLx+yB0RMU3fIqqbKFEdo6Yt0ydkIgh661c0BiZdR2F5BpWhoSzt0aMJ+qXlprarLJ6/iRMpTNSeabRDHF8qW6Y4fSmtsT3sOaRVG0R68btvbGwsdH7jV79hzxGt1lvQmHf0wE6pOg2LvBvF3rjjddJzgbjErYs4zwBB6fiVMej7sbExbxaFg6+MJczZs2dxsXMYJ2d4hhDPEIpP2NkSsmcIbb61jPYdA742RzmXxq8eop6d4qdvniFU3jOEBtcXsXfv3lhlCmovniGU7LkB3vMUynSG0GT7Cj5809WxyyKjqTA/51f2oPt4hlB5zxB68FuvYmazN9J47AfPEOIZQlFskD1D6OzZs9i7d2/o/IZnCEUvV9Q6SNPXO+h6hpCjU91hlLEMOXPmDPbt25e3GYQAoB6JHlCnRHWoUaIb1CxRHWqU6EBRdMooYxnibCsT/fL3B89WcHbpMoZ6OrB/Z2/TL3xRf7GT/RUxKC33r4c37x2MtDvI+czZbePsEvD+ohV1RTfoF9C4u5/cv0IG/XrvXb126qerw8D+nb0N9wLAHzxbwfm3NvB3rh8RHo4mqjOnfH2dbfVdSlfv6g3dSRbUjn75rqEPj3iijITt4PL71Trqr4HufJ48u4Tzb23g8EQ/quubeP3CKtY27Xq9udsIAJYvbzR8L5NH1J1t7jxF+Xl3v7jrS2YHiPsX1e9/71W+9e5Xp96+IPp1ShaZX+IdHxVFz7L5eXdWeXeXXOPym+773H1E9Itc2K/C3jJdvau3wQ8DqLe70weDdqO02gZRfZi3X3jbLuqvbcAVrYWVJc6v3rJpyuwIibqTIMovf+56kP0l1Ltl3C8/95gx0N2R+M6XoLxF13n1L7v7zy+fsM+A4HHL61enF1bxbGW5vpPAe707fb8dY96dNM5445TZWzaRvSKfA6BpB6TbPuf//XYWR90NmvQv9DKvOcj6pVOzVfzOk2fx+oXL2D/U07TrwzsfDPLZIhtk6wqIt8svSANhO8HCdru3QlDdBEVylNkxHNRf/HYsRpl/t1Lm33nyLF5ZWEVfZxv+0bf31vupd57u1L37c3f/bmWeEnSfzLNR2D3e+aK3LLJakmlr0fgr0++c8eHwRH/DLu+0dj2K5ph+8xhR/X71r88BBvDJb9sdOgdLYk7wiw+8hiffuIh3Te7Az+i/HhQIdwglzPT0NKo9o03RjX79sTNNh5J1tl2JEuKNlBMW9UM2EklQWqLoFKLT2508nfK4T2sXRewRIXsqfFAUFXf+TlllIqiJoo7JROu49ZphPPDKorAsHW3A5hbgTtZ9Yr5fnflFQOtoM7C55R+NLqgdveV1Rz2w7ZqN3nbziwLnreugyEsyJ/x78xHxqZt246t/c05YL4A4EoEoD1ntivqJNz8AwsgtboI07Y2yces1w3h0+kJTffi1q9e+NvhrLQxRWZ32dtfTv/zTF5qiaATpWbYfe/GWpaPNwL96Vz8mJiYD7/NG9fDqU+QrvWXy5u2mo83Alu3fX1ttg6g+zK8enbaLGr3E3X9FEVO8E7GokXOiphmWbpRoRGH69KuHMC27mZ6extTUVGB+fhGfwuyPgmxfFOnfq3GRrwkad8M+80ba2Q6CCduu+Upv9EUvbQDa2+SjZnq/E9FuNEb++WFPdFbRgbEinHHZG7XOfcCxO4+oESVFdduqXtyaFSHrlz53ZC/+06NnGvyfO3KUc713Pijy2WERGoPqKm6kQG/6bg2EzY28ZNWXvb7EHckxbNwI6y+iuvSLwuq+Jwldnpqt4if/5IWmcdjdT6MQd57itSkoSiwgftYKuycMGS3JtLVo/BVFTPT2O+/44JQxrciJojkmAOE8RqZ+g+ZgScwJfvGB1xqeAW+9Zhg/feuBluohbxhlLEP6+/txcqY5upHI0bmjhESN+iEbiSQoLdEJ76LT273lcWxe35L33rKnwgdFUYkTScCbZpA93vp48g3xqfI2ahEFvMm67/erM78IaGHR6ILa0Y07340tYGM7GkhYxBS/upaJZBdkh4xCHpkWR9Krf+8TRSWsL3jrI6ifePPzy9NNkKa9UTaefOOisD782tVrX5DWwhCVVRThTBRFw/19lOgWQe3p/Wpjy8ar1bbQ+7xRPcIiy4jKFJC8MFpfkm0Q1Yf51Ufc6CXu/hvU1qK8ZSLnRE0zLN0o0YjC9OlXD1GiqfT394fm56eJNKKwyYwFomhwYb4maNwN+8w7bm2hNv7YANY3myMTetkS2Bjk52XGGW/kH++YJvsQ6ozL3qh1orE0TkTJKD5WFrdmRcj6pUdeu9Dk/9yRo/zmgyKfLeqbsnUVN1JgU4RMwbghO2fJqi+LIgTKjhth/UVUl36aTVqXJ2eWheNwnMUgIP48xWtTg94Ffkr0rBV2TxgyWpJpa+H4K4iY6E3Xe49TxrQiJ4rmCH7zGJn6DZqDJTEn8D4D+j0TFgUuCKXA4cnm6EaiSEXuKCFRo37IRiIJSkt0wrtshDHnMz9komN48drujaISJ5KAN82gcnrr4+arBoV2OtG9vMm67/erM78IaGHR6ILa0Y0731qUDASe1u/OX1TXMpHsguzwV8gVjk6JI+nVv/eJohLWF7z1EdRPvPn55ekmSNPeKBs3XzUorA+/dvXaF6S1MERlFUU4E0XRcH8fJbpFUHt6v+poM3BotCf0Pm9UD68+RW3vLVPQgCeK1pdkG0T1YX71ETd6ibv/BrW1KG+ZyDlR0wxLN0o0ojB9+tVD3Ggqfvn5aSKNKGwyY4EoGlyYrwkad8M+845bbgyj2S96aRPYGOTnvd+JsvZG/vGOaX72NtkPcdQ60VgaJ6JkFB+bFLJ+6eiBnU3+zx05ym8+KPLZor4pW1dxIwU2RcgUjBt+WvKbKyVBUN2IIgTKjhth/UVUl36aTVqXhycHhOOwqB9KzR9jzlO8NjXoXeCnRM9aYfeElUVGSzJtLRx/BRETvel67zGQbuRE0RzBbx4jU79Bc7Ak5gTeZ0C/Z8KikPorY5ZlfQ+AnwRwCcAwgC4AnzBN86xzTdFeGZuamhK+f80zhHiGkLt8WZwhVKnMYNbuF7YbzxDiGULea/I6Q6hvdb7uN3mGkLgeAZ4hFEQS5wUE4X39xi8/niF05UyeJ89cxMaWjTYD+NH376uPqTxDKJszhMJeGQvKU+RneYYQzxBK+gyhnjYb/+Rde3mGUATb/L7jGULN+bU6J3DOEDo03Iaf+8Tbk6iGXMk1yphlWZ8H8Lhpmif8rinSgtDq6ip6enryNoMQANQj0QPqlKgONRqdNB4qiDzULFEdapToQFF0mneUsUkAlQzyyZ1Ts1U89NxZfOjgXgDNq43OSuP1Izvwjj39oSuxsjt9/H7ViPKrnuyvB95fgADUV3b9fmEX/Zrmti/oV/BWV/v9dnUE2eLd9VRd30TYL0tfeeINPPDyAiYHunHrtbsCd4/I/ILsrTfRr7xBO1ac+zfeuoiOHYO+u338fh3w04cf3l99g8ou+gVDdtdM1PyCCPo1zPtL1Z+cPoc3ltZw1WA3/sXR/YG/yLnbRPRrkOwOF8cOZzfVVQPdWLq80fTLq2jHRdjuBecXRwDCOgjaeeJO+7HXLtR3Qb3/wM7AnWfecjn9HQDmli6hrbO74Vcj2Z0zzq/6J2cu1cvl3YEEoN6vT85cwvrWFja2bOwd6qn/8urXLn4+Ishfi3yNzK/bMr9Y+e28c+/ODBsjWv113c9u7w7HKDsGZG0U7bxz13vYL7DeXZ9hv9L6+VJZwnZxyeg8yi4tkUZFux1FcwS/vGR3HIjy9l4n0oNfmbzznzD7/HYwu32Dt7yvX1jF0upGgy8QpQtE35kSp62i7P4K290xNzeH5a5dDbuSnbpwdjC4+4qzw0C0I2p6YRWPTdfOErppvL8+h3XXi9vvinZIBOnNaV9nx+7S6kbDbnr37ge/nW5Ous4u0L1DPb52BLWnjO+X1YOfzpy6Eu0+Dxp/wnTgZ7+fvUFzTe8uEycN0XxNducnUPPh9zw3j8ubW+hqM3Bk/06sbm6G7voJKo9oXPTOJ4LK5p3LuLX5x38zh8fPLGGivwvv3jvY9EaEUxeVi5fxbGUZ7W1t+M4bR/H9770qUBdRdgiG+We35r1+zK8Og/L1jrNBhPUL0XOVzLw9yId7yyM7rgCNY7LblwT5mLm5uUKEnQ8iix1C/wPAPzdN8y2/a4qwQ+jU7JWT/d2RKJwTy//4b+aaIlZ1B5zmfmpWLlqYO193S/pFFnDuDftMFIHgNx8/GxhVTBSlx5uecwij+zR7d2QDh842cSQI2e2VftEi3JFCRLYEldHPpsdeuxAakcBBJgqNY79Tb95oZu6IZKI8nXJ4o0x4I4Z50w3TjF/de8skW3YnCoJs5K2o+QXh7V9O/QP+keAc2gzgV7ejqzhpyUYn8epHtv97caK3iKI2+fUbb70573O7I/CERa9yaxM2mqLOOAfIuu3xRowJq9+wyDRhaXijgTl68jsEv6PNwI/4tEtQHwprL7evcUcl8tO1t9+LrpXRmrc/eO+J0l/8+onIbnf6Trm9de7XtoB/JCl3XqLofQ+/tuirBa+9Iv8rKlNQ2aL4Gm9+oshrsjr3s9ObhlejftFvvP7eL6+gOgD8o1KKdCuKQuW3SOad/wDNvso7Xnr15M3PidTkLa/3e9E4HCcynahcQfUlG91HlI4oQtS5c+fwpScvBPpbB6/fDOrHDp0u/2Yg+GDgIL152zfMNlG0PKBWL95IRiI7RHN0v/Hcb/4kowe/scov2mXYHC5ozAjypX7lDZtruiNV+UXVE7VdkE/1+nARojlHUHm89eVN6+pdvU26cJfNO5cJikYahU/dtFu4mBLUblHHApHm3X7MnZ+MDxc90/iVw1sWUb9w0vf64rCx1G/McM/X/OZBQdHHRNH7tgT+y+tjBtcXsXfvXmGaOpH3DqHdAP4/y7KGACwB+AXTNB9yX1CtVnHXXXehs7MTm5ub2L9/P44cOYJKpYK+vj60t7fj4sWLGBsbw8LCAmzbxtjYGGZnZ+tRFC5duoTx8XHMzc3BMAzs2rULc3NzGBwcxObmJqrVKiYmJlCpVNDZ2YmhoSHMz89jaGgIa2trWFlZqX/f1dWFgYEBnD9/HsPDw1hZWcHq6mr9+56eHvT29mJxcREjIyNYXl7G8eeXsL4tzo0twJHp+paNR55/E0+8Xm2qmPVNG8dfPl8X9fqWjeOnz2C8YwwnXl5qGEQ2bWBze/FufdPGiZdn0bfajqfnOoSdwonq8fSZC1i+tIz1TRtb259947V5rK+vX8l308ajL86gs7Oz/pltu8qwaeOBF85hPSQMwMbWlTI//NwbsGHX83Wn57bv+MvnhZOV9S0b9z8/22D3Yy9V0LfaEdpOfnXi5Otun7ot2/mtBZRxfcvG15+rNNh04uVZPPhq8wn8NhrbybH5/ucv+dbd8dNnMLw1hCfPrHvaQVzPfnn+5UuNiyxO+e47PeNpD3+b19bWGsr5zdcX0Lc6L+xP3jK5tde3Ol9vp/tOzzRc9/Bri8J28mr9sZcq2NM9gqWlJYyOjuL+52eF+R0/fQYHBvZL+YiHX1lpiqhx/PQZDPQPhE6et2zgkRfexP6+SZw/fx7fqKDe94NY37Lx0CsLDf3O3SbuOjvxxmZgxK0HXjyHQ6M9TbZubPmn6W0nr9TXt2w8OX0ef3V2qeHzh15ZwNt3VNHT04NvvLbq27dEXWd960r+fX19ePyV5dD6ve/0DN61f7jJL052jWNzcxPHT89HimLm1pMIUZ252wlo9hHuvjLZNYzjp2ebbPL6mgaf6ilTtVpt8Fte/3v89Bm8befVOH76TKjW3HW2v28vHnlhprks22lO9e/D0tIS1tfX6/3ZPeZ+81xbQ3utb9XKPN4xVO9PDz13til9r491uO/0DA7vGbhS19t2tre3N5TL60OcMffBl+Yb0nvy7FKgnpx+vbt9FO3t7U0+yK9MzjzimzO2UAfHT5/Bzs3B0HnEgy83RiW57/QMPnrNQH0e4e5P7nauVCp47OxGg6acfJ3vnXY6frpxnDzu8THeOnNw5+n1e+tbNp54dQ6jRhXHTy8I20Y0j7j/hdmGtn3khTfRt9pV17aX+5+fxdt3VJu05+1PIl/11JlFDKwt4OFXVprGZGf88rKxVRtP1tfXfSP4PfriDPpWO6X6Y6VSQW9vL7q6uurjU1h/cvs1r99paDuBj3DSfGS6cXx+4IVzTe335PR5LC+/Fegr3XgvC+rHV+or+Htvek6Zuru7A9s3zLb6XNPjI77x2mpoWqI5uttHOP3Jq/cHXjwnnM+GtZOo/v2axMnLb/xx+pOT/mNnNxr72/NvYnNrs8n+hvJu1vqOM88ImhM+9MqC7xzeQVTfjt/d27un6fnp+CtLzTd4+MuX5vD2HVWMjo7ikeffDBxf1jevzMtFTf/15yo4uKuryc4HX5qvl81LEotBQG2O+7GJjSYf4S6T47MMw2j47KHnzuKaoSnMzs42zQedZ6wDA3tx/PQZYTTJR55/E1P9ezA/P48nZmyhpp+cPo+33nqrab7oHTMeenURH9/fhrW1tXo7OmU6froi7hebNh5/5RwuX74s9MXu8eeaoQNNz+6Pv7nl68Mdv+nX1e87PYMPXtUlfHZ/8KXFpvREeH3MkZ2rmJ+f12I9QtROjvaCyCLK2E8D+JRpmu8D8HUAf2FZ1vXuC/r6+vCZz3wG3/u934tPf/rTuOWWW9Dd3Y2pqSmMjo5ieHgYU1NT2LFjB/bu3Yt9+/ahp6cHU1NTGBkZwcjICKamptDT04N9+/Zh79692LFjB6ampjA8PIzR0VFMTU3V09yzZw/6+vowNTWFnTt3Yvfu3Q3fT05Oor+/H1NTUxgcHMT4+HjD9+Pj4xgcHMTU1BT6+/sxOTmJW27ch852ox4hquF09Bv24L37dzZVTGe7gVveNoKu9ivX3nLjPoyMjOB9bxvf/vWlRrvhSrPdwPveVrPpnft2oqu9OTJC23b679y384pt2/e+58AoPnDd5JV82w184LpJvOfAaP2zhjK0G7j1+t3oDAnH4T6l/YMHr8KHDu6t5+uk57XvlreNNJSzXjdtBo7dMN5g9/uvnZBqJ2+duHG3jzcKw7EbxtEVUMbONgMfPTjRYNP73jaOD1/b3Mmc8jnt5Nh87IZx37q75cZ9mJycxM1TIw3tIIrK5Fe2znYDH7l2rKH8Tvk+duNkQ3t40zVcNns18+79u3z7k7dMTjrv3LezoZ0+duNkw3UfPDAsbCev1t9/7QR27qyl1dfX55vfLTfuk/YRHzx4VVNEjVtu3Id37tsp1GNDPRvA0ev31LX3ngOj6PTRm5vONgMfumZXQ79zt4m7zt73tvHAiFu3Xre7yUc45fBL01tv7Z7IFJ1tBm6eGmlqpw9ds6vu99w+QhR1xlsHnW1X8h8dHcWRa3aH1u/HbpzEu/YNN/lFR3u33LgvUhQzR09+iOrMaSc/H+Hu/8PDw0KbvGOBd1xwl8ntt0T+95Yb96G7u7veL4O05th6y4370N/fj6PX72kuy3aafX192LNnT0N/do+5796/q6G9OttqZXb3pw8d3NuUvmO/l4/dOIn3Xj12pa637Tx6/Z6GcrnHL/eY6/W1N+8dCtST06+dMnm17VcmZx7x7v1iHdxy4z6pecSH3zbSVH73PMLdn9ztPDU1hfdfO9GgKSdfbzt5ffUtHh8jGp/cdSzye51tBt579Rh2797dpDnnPtE84tj14w1te/T6PQ3a9nLshnGh9rz9SeSr3rVvuO7LvWOyY7NID++/dsLXh3S01eZCsv1xamoKu3fvbhifwvqT2695/U5D2wl8hJPm0Rv2NNx36/W7m9rv5qkRHBrtDvSVXj24cXZiBPvOK/USMj1s6DtHrtkd2L5htnW0NY9vTn+SsUPki739yav3W6/b3TSflWknvyi3vnUUMP44/cntIxr62w17hPZ79fuufcP1eUbQnPBD1+zyncM7iNrO8bui56dbrhlBGB+5dqzen47e0Dx+ecvjzMtFTf/RgxP44MGrmmz88LWj9bJ5y53Ug/EHDwwLfYRTJrfPOnLN7obPPnRwb30O650POs9YO3bswC037hPW/9EbroxPzpjr1fTNUyNN48c79+1sGjM+dPUwJicnG9rRKZP7fm+7HLlmt68vds/bRc/uR64RP3O652t+Xf1jN076Prt7y+YXedXrYzo7O7VZjxC1k6O9IFJ/ZcyNZVltqEUb+6Jpmr/sfF6EV8aA2ha3x185hyPX7AbAM4T80uMZQtmdIdSxeRkb7d08Q0gAzxBS5wyhhUsrsNs6eIYQzxBS9gwhry+VpexnCHnT4BlC2Z0htLi4iJm1Lp4hxDOEfO3N+wyh7nYD793HM4T8PvPqiGcI5XOG0OLiIoaHhwPT1YG8o4z1maZZdf17AcDPmKb5m85nRVkQAoD5+fnQbVmEZAX1SHSAOiWqQ40S3aBmiepQo0QHiqLToAWhVF8ZsyxrF4D7Lcvq3v7339/+6mtp5psn1WrzWUGE5AX1SHSAOiWqQ40S3aBmiepQo0QHyqDTtA+VXgLwRwD+1LKsDgDrAI6Zptl8smNBmJiYyNsEQupQj0QHqFOiOtQo0Q1qlqgONUp0oAw6TXVByDTNTQC/uP1XCiqVCqampvI2gxAA1CPRA+qUqA41SnSDmiWqQ40SHSiDTrOIMlYqzpw5k7cJhNShHokOUKdEdahRohvULFEdapToQBl0ygWhhHn99dfzNoGQOtQj0QHqlKgONUp0g5olqkONEh0og065IJQw6+vreZtASB3qkegAdUpUhxolukHNEtWhRokOlEGnqYedl+H++++fAzCdtx1JsLa2NtrV1TWftx2EANQj0QPqlKgONUp0g5olqkONEh0okE6njh07Nib6QokFIUIIIYQQQgghhBCSHXxljBBCCCGEEEIIIaRkcEGIEEIIIYQQQgghpGRwQYgQQgghJEcsyzLytoEQQggh5aMjbwPywLKs/QB+EsDbAXQB+B3TNO/a/u4AgF8EsB/AfzNN8yuC+w8AOGya5tdcn/0ogM8DWACwCmALwLcDeIdpmr4HZluW9U4A/xbAbgC/ZJrmHwuu+TYAe0zTvC9GcYni6KJHy7ImAPw0gMMAugH8lmma/z1msYlGaKTRzwP4ewA2AewEYAP4kGmaq/FKTnRCB51aljUM4DkAMwCqADYAXAXgLgA/F7vwRDt00Ov2d7cA+DEA4wBOA/h3pmnOxi030QuVdLp9by+ATwL4mmmaVcH3fGYqGWlodPvz7wHwwwAGADwP4KdN03wjxBYtn+tLuSAE4G4AP4+aM7oNwJ9YljUH4DiA+wB8L2qD3jcty6qYpvmnAGBZ1j8C8AMAPgzgDwC4hfNfTNP8decflmW9D8DPhwzA+wD8IYCPAlgB8IxlWa+bpvmMZVltAP45gM8CuBnAndu2keKhvB63L/k5AH+2befnAPyuZVkvmab5SGvFJxqgi0YPAPjHpmnOtFpgoiU66PQCgAnTNG3X9acB/I+WSk50RHm9WpZ1CLVx/wiAZwH8AoCvWpZ11DTNrQTqgKiPKjr9NgD/AsA/BDAIoNf1HZ+Zyk3iGt1eCP89AO8G8AqA/wjgvwL4hJ8ROj/Xl3VB6EdN0/yr7f+/x7KsZ1H7VfkAgDdM03wSACzL+p8AfgrAn25fexK1VemHUVvRrmOa5qYnj38GoGkV0sOPAXjYNM1Xt/O7B7UVzn9qmuaWZVmPoibyV7z5kUKhvB63v/9h0zTXt7/7fQC/AWBUvphEY3TR6DiAuUglI0VCeZ26F4K2v/sAgNdN03xNsoykOCiv1+2/V0zTPLn93R2o+dj3A+CPQeVAFZ1eQO2HyZdQ23lRT5PPTKUncY2ittvoddM0T2/f+00A7wixQ9vn+lKeIeQSjUM3atu3/z6AJ1yfnwLwfsuyurbvO2Wa5hJqWxxt+GBZ1g4AfxvAV0NMEeX3EZedz5qmeQHAxaD8iN5opEdnMagXwI+gtvJ+b0iapADoolEAHaZpboSkQQqKRjp181kAvxuSHikgmui1B7XXbx2bL6P2MHMwJE1SEFTRqWmab5imeRY+P/rwmam8pKTRewDssSzri5Zl7UVtd8+/CjFF2+f6Ui4IubEs63oA16G2TewAgHnX10sA2lH71dlNWCP+AwD/J+jcCqt2gOSUIL8Jq/lwSaVEQ9JDdT1uv/f9Emq/Gt5umuZaSN6kYCiu0asty/q6ZVlPWJb1R5Zl3RRWHlJMFNepc20fgL+DxlcpSAlRWK93Axi3LOu7t68fB7ADQF9I3qSA5KXTiOnxmanEJKXR7V27HwLwLwG8htprjicC8tX6ub6sr4wBACzL6gTwWwB+1zTNk5ZlDaJxkcx5P3olYtLfB+DfuPL5CIAvur6/D8CvoLaC6c3vsndLOSkHOuhx+53vX7cs67sAPGRZ1vc47+KS4qOBRn8IwLdQ24r7ZQB/aVnW9aZpLkS0h2iMBjp1+BSAPzNNM6odpEAortcnLMv6TgA/ZFnWDwH4C9Qepp6NaAvRnDx1aprmL8QwmZSMJDW6febPT6D2ytcogP9qWVavaZq/UcTn+lIvCAH4NQDDqDU4UNtetsf1fQ+AZdM05yGJZVk3oLYi+ajzmWmafwngLwXXLgrye0U2L1I4tNGjaZp/ZFnWw6i9980FofKgtEZN0/yG69r/gNr73LcC+N+y9pBCoLROXfwAgH8nawMpLErr1TTNe7H9evj2mVcGAO8rGqT45KpTQiRIUqP/FsCWaZq/AwCWZZ0H8NuWZf15EZ/rS/vKmFULT/xJAJ80r4QtPIGaY3K4BsDjgtvbUBsQRfwggD+UXA1MIj9SAHTQ4/brDW56AZyVSJcUAE00usP1nWPjJYl0SUHQQafbdt4E4G0AHpRIjxQUXfS6bauBWpSx27fPwSAlQRGdutML+57PTCUjBY1+EsAzrn87PyweCjBD2+f6Uu4QsizrJ1Db6vVB0zTdK3e/BeBhy7KmALwJ4NMAbhck0b795023G8BnAPxdSVN+A8BXLMv6Imrbyr4LtfMEpPIjxUAHPVqWtQvAH1qW9bHtk/I/DOBG1A6XJgVHE42+A8DPWZb1SbMWDvmzAF4G8JBk2kRzdNCpix8E8L8F0XZISdBJr5Zl9QD4VQCvA/hNyXRJAVBIp+70YFlWu4//5DNTyUhJo88A+C7Lsn57+3yrjwN4A8FzSm2f60u3IGRZ1iiA/xtABcCvWZbVDqALwIJpmh+3LOufobYKuAbg103TfFCQzND2n5fvBnDRCW8Xhmma91iW9XMA7kftzIsfNk3zpQj5Ec3RSI9voeYc79t+r3YFwN82TfMZqYISbdFIoy8AeB7An2+/R34BwN8yTfMtuZISndFIp06kxk8D+E7Z8pFioYtet3dd/hSAfQC+bprm3RGKSTRHJZ160nP+KzofkM9MJSJFjX4ewH8E8Nfbr4udA3DrdlQyIVo/19u2zb8Yf3fccUdHxvm1511m/qn7l7Ue+ce/qH/UKP90+KNO+afTH/XKPx3+ktbpHXfc0X7HHXcYQd/nXWb+6fVX9ud6w7aVP/iaEEIIIYQQQgghhCRIaQ+VJoQQQgghhBBCCCkrXBAihBBCCCGEEEIIKRlcECKEEEIIIYQQQggpGVwQIoQQQgghhBBCCCkZXBAihBBCCCGEEEIIKRlcECKEEEIIIYQQQggpGVwQIoQQQgghhBBCCCkZXBAihBBCCCGEEEIIKRlcECKEEEIIIYQQQggpGf8/7ZSIRiiL3AEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1440x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "dark"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"fig.set_size_inches(20, 4)\n",
"plt.plot(data.time, data.mag, \".\");\n",
"plt.ylabel(\"Magnitude\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There's no visible trend in this time series. \n",
"\n",
"Let's examine the distribution of earthquake magnitudes (recall that we only have data for earthquakes of magnitude larger than 5). "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEZCAYAAAC6m7+xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAArjklEQVR4nO2deXgkV3nuf596uiWNNrShGRJm2BliSAg2wRD2YUnMbi6+cAOYzTisBi48AUIoV9gxYXGCIQRCxiQY4sRLjE1Ygh18w7BZwGV1MA5j4zsS2iKpNdK0pvvcP6p6pi1Lo+5xa75zqr7f88wzXV3Vp956u/X2qVNf1xHnHIZhGIZ/dGgLMAzDMNbHAtowDMNTLKANwzA8xQLaMAzDUyygDcMwPMUC2jAMw1MsoFtERDpERJp9Pq+kfpwvIt8Vkfgk7/uZIvLok7zP7SLyHhG538ncbwiIyJCInCci/dpaQsMCunU+Dvx0nedfANREZARARB4uIgdEpGuzBkWks80afeAdwHXAI4BPbOWO1vHvz4CHbuU+N+DNQK/CftuKiDxHRMbXPHdnPqO/CXwYKN4ZXXnEArp1ysB/r/P8Uvp/fd33gXOccyvHa0xELgFe2iZtXiAiHSTHfp1zruKcu20L9/XHwL41Ty+RvE8nk/r7vHiS97sV/BtwXn1hA49bobzmf6NJLKBbZwk4ssHzOOfq6w4D/+d4DaVDIjuAQ+0QJiLbWunpiEhRRLaiV3N3YKjdjW6gd4xj4VinRuL/ieyjI/2CWXd5I5xztfRh5UT227C/ThEp3Jk2mtxPz3FWzwPfbVi+g8ciUmjBpxqAc+6E3pM8YwHdOkeA9X4fv/YP85nAkojcBUBEXiIiHxWRz4rIdekf4auAPcDLRGRffThERF6eLn9ERK4UkUfWGxWRc0XkHSLy1yKyJCIXiMip6erLgLeKyCdF5Dvp9mekbdT3e58GjTcALxGR96djxeMicoqIXCQiPxCRm0TklPVMSMcVPyEiH0y1fFpEBtMhng8ABRH5OxE5Z53XdohIJCKXiMg/pmO3kq57sYhcnj7/pfqQ0Rq9/5Ju84TU599P/Xpwup0D7pL68H0R+bmIPKBh/49JPblQRK4QEdfw2suBCxv2+SHgivR1BRH5gIj8g4j8a+rTutcd0vf7xyKyK10+M93np0Tk8/XPxTpMAU8TkY+JyA9F5Gsi8oD0+G5Mj2dn2uaOVMvFIvJ1EXlZw/4HROTDIvJmEfmGiPxIRN6RrnsIUBaR00XkGhG5RUQubdBwHnAw3XYjj2eBMxte8z3gdQ37f3Kq6wLgo2u82S0in0s/P18Rkcemz4+m/nxYRP5DRJ63gUf5wTln/1r4B0QkH96Prfl3VWLn0e32kgRFMV2eA+6fPn54w3bXAmc3LD8DuBEopMsPIfljGALuQ3KaWErXfRV4ecNrPwP8GHgwcNf0uRcAg+njPwH+tmH760lOZ++VLn8TuBroS5cvBd62gQ+XA3/WsHwh8Hfp492NXqzz2vOAf00fbwOmgTPS5XMbju9jwNvX6L0euC8w0vB+fHpN+9emx3LvdPlvgQvSx7tSP+/VsH/XsPwZ4M8b2noHcHHD8msaHv8EeHTDskuP/Q9Ixt/rvp+afmbqvl4BvH8Db24FPg/claQD9f+ATwIlQIBvA89Pt713g2/1Xm798/ZO4BPp47sDq0BPw+sc8C6SceHtJJ+rU9L1LwVuW/OZX+vxrcDj17w3L0kf/y5wGzCQLj+w/nlIj2EceG66/Mz0GAvp5+KS9PlB0r+XPP/bhnEi3OSce0XjEyKyF3hqw1PV9P/6qe8VwJdF5NPA3xyn7bOArzvnqgDOuXFJetsPB75B8kEeFZEJYJgk3Br3+W3n3PfrTzjnPiMi9xORFwKPJvljbNz+Yufczenyz4D/cs7Vx1F/TPLHfDsk6ek/jaSnXOdamr8Y+BxgRUTeky7fAPSnev9aRB4sIk8i+cNuvMhaBa51zv28iX18zDn3i/TxLSTBCXAGcEv9mJ1zR9JOcP19qjY8Xm/5YyLyROD3gR7gnsDXG9a/EXgM8AjnXH3M9VkkY9NvTfdVYf2zsPr+LnLO/RpARP4TuN45V0mXf0L6njjnfiEivxaR/0nypVwC7gYcIPlCeIgkww53JRm2qDTsA+fcn6bLqyIyDYw0rG885o10buTTc4Bx59x8utw4Ln9vkgB/mIj8DtAH3JT+/3XgbSJyJcln6YubaMg8FtCt00ESkmspQHIaXA/XFAFwzr1YRB4EvBb4sYjc1zk3tU47XfXXpO0V07arzrk5Efk4Sa+uCvy1c+6yNa8/0LggIn8BDADvI/kjPXvN9mtP0TdbhiQICiQBVaebY3+gHem+t7ljY/KN9AOXO+f+Yo3WAvAPwM3ARWmb91jz2gNsjqyju75cXKO7jlvzf51tHHtvd5B80X4M+CBJENe119u/juTU/+nAZ9Pn+oEbnXNvaUJ7o9bjLovIY4D3AG8n6eW+uWGbz5J0GD5GcsxPdM6ttrDfzUpGN/SJY7392zeefFnUS+3e6ZybWbPJ99IhobOAvwIuAd66iY5MY2PQrVPg9r3QOj1r/q9/WDtEpF9ETnPO/ZAkoLtILg5CMqbd19DOFcDjRKRervV4ktPP/SJyL+C3nHMvcc6d45z7+DraGi/c9AKvB85Pe52712gvcPsvm9u9fp1lAJxzC8DXSHrRdZ5GMgbeeOyNx9XIV4EXiMhQqnNXOrZ5f5Jgi5xzv9pA71o9a/3b7DiuBnbJsXH7tfwS+I1U16OAFzW0fyZQds7tI+mNjjXoqx/zz4GnAB8XkWc3HO/j0h5jvWb6CRvsv5X35FXANc65rwI70+fqel5PcnZ0bvp5+d6aNuqBuV67a/e5nse/BH5DEl4D/HbDNleRjFnXLxQ/Mf2/j2RY6CC3H68+Q5ILwI8GVlN/Lyb5POQaC+jWGWT94Kk/Vw/WgYbndwLvFpGLSHo270/DGpIxz9eJyF+mPc7PABcAnxORDwHnkIwzzpOM+x0WkRkROZhe3LlKRPY07HOwLig9xf4IcLWIXAxMAHcXkbc1bD+85tgGG5b71yw38kfAiCQXAv+KZFz3TQ3tNHqwlreTjBF/W0SuBV4D/NQ59xOSP+7/SIeCfgA8suHi1+2OL+VK4NT0YtnuDbbrr2tJhzbOAi6U5CLi7S5gkZSTPVREvkEyPvqXJOPWkIy794rIV0nOSL5A8t49vOFYe9MhpjeSvIfPdc79C0lt9udF5Fskp+/r1dLXtTf7nvwNcJaIXAE8D7iGZAjmrunjd4jIRPpZuVGSi8GFBq3repT+3/gZX8/jC0jO5P6NpAPx9bpPzrl/J3mPrxGRr5DUQQPsdknZ6VNJvrB+KiJXAZ1p7/6JqWcXAQ9LPcs1kg7IG02SfsBZM4xR741I/fm1y23a9ykkF9He4pxbkuSXWe8FRp1zz6n3iNyxkq/N2rvd9pstt6BTSL78a66NH7Bm9bR6HCLiSC4o3rze+hb0FVhzzCIirXiQtuHu7HsiIq8k6e1fnL7mXsCXSb4MrwE6Gj+bjfvdis+ucWLYGHSLbPShXfsH02qoNcnZwLRzrl5zvSAiPyX9AUCr+9xM84keQxpIbf/jblZPK8chx2qOj1cX3BTrfTZa/YJa28adeE/OB06rv0ZEfkkytHDLeu9P43636LNrnADWgw4IEbk3yUWhRZKyqX6SMc931a/yG60hSZ31FEnVxX5tPe1Ckqqdp5MMPXWQXPe4xDl3taowoyUsoI3cU6/AaOdwjGG0AwtowzAMT7EqDsMwDE9p20XC6667znV2ZvGumYZhGFvHoUOHpvfu3Tu63rq2BXRnZyd79uzZfMN1OHDgALt37958Q2NLMP/1MO/18MX78fHxDX8d68UQR7Fo9/HWxPzXw7zXIwTvvQjogYGNfnBmnAzMfz3Mez1C8N6LgJ6ent58I2PLMP/1MO/1CMF7LwI6hG+yLGP+62He6xGC914EdKViP4LTxPzXw7zXIwTvvQjo5eVlbQm5xvzXw7zXIwTvvQjoHTt2bL6RsWWY/3qY93qE4L0XAT0xMaEtIdeY/3qY93qE4L0Xtxsdn1jm36cPNrXtC0/duflGRkuUSiVtCbnFvNcjBO+96EEf7ujafCNjy+jr22hmKmOrMe/1CMF7LwK6p7qkLSHXzMysnbvTOFmY93qE4L0XAX2oY705WI2TxeDgRtMOGluNea9HCN57EdBFmwxElRDKjbKKea9HCN57EtBHtCXkmpWVFW0JucW81yME770I6IVt/doSck0I9aBZxbzXIwTvWw7oOI4fHcfxW9spov/IQjubM1okhHrQrGLe6xGC9y0FdBzHQ8DngVe0U8SqeFGOnVu6uqzMUQvzXo8QvG+1B30h8O9AWweNV8X/gvEs093drS0ht5j3eoTgfdMBHcfxGen2X2y3iO21Q+1u0miBubk5bQm5xbzXIwTvmxpbiOO4F3g38GTgD9bbZmlpiX379lEsFqlWq+zatYvTTz+diYkJenp6KBQKLCwsMDo6yuzsLM45RkdHmZycpEoH26tLdNYOs1joo7daxiEcKmynt1pmpaOLDmqUahUOHx5iYmKCYrHIwMAA09PTDAwMUKlUWF5eZseOHUxMTFAqlejr62NmZobBwUGWl5dZWVk5ur6rq4vu7m7m5uYYHh5mcXGRSqVydH13dzelUon5+XlGRkaYn59ndXX16PrNjqm3txeAcrnM2NgYU1NTiAhDQ0NMTU3R399PtVplaWnpaJtax9Tf38+BAwcydUyhvE/d3d0cPHgwU8cUyvvknKNcLqsf0/EQ51wzAf1B4CdRFH0yjuOzgfOjKLpn4zb79+93Jzpp7OXf+hmL25q7ebbdi6P9HDx4kJ07zVcNzHs9fPF+fHz8hr1795623rpNhzjiOD4FeDDwqTbrOso2V92qpo0mCOHG5VnFvNcjBO+bGeJ4LNAHfC2OY4CdwI44jq8Bzoyi6E5Xe1sdtC4h1INmFfNejxC83zSgoyj6KPDR+nIcxy8F3hZF0RntEtF/ZIG54lC7mjNaZGJigt27d2vLyCXmvR4heH8ivyRs+0yLFSm2u0mjBUIoN8oq5r0eIXjf8i9Eoij6IPDBdoqo2g9VVAnhxuVZxbzXIwTvvbgXR3fN/7tKZZn5+XltCbnFvNcjBO+9COhyoUdbQq4ZGRnRlpBbzHs9QvDei4Durvl/278sE0JPIquY93qE4L0XAV2wOmhVVldXtSXkFvNejxC89yKgrQ5alxDqQbOKea9HCN57EdB2P2hdQrgvblYx7/UIwXsvArrS4X+5S5bp6bGLtFqY93qE4L0XAV3zQ0ZuKRQK2hJyi3mvRwjee5GMXVbFocrCgg0xaWHe6xGC914EdLmw+X1Rja1jdHRUW0JuMe/1CMF7LwJ6e9VmVNFkdnZWW0JuMe/1CMF7LwJa2HzSAGPraGbSBmNrMO/1CMF7LwLahjh0CeFUL6uY93qE4L0XAd1XXdSWkGsmJye1JeQW816PELz3IqAPd3RqS8g1zUxeaWwN5r0eIXjvRUAbhmEYd8SLgO6sHdaWkGvK5bK2hNxi3usRgvdeBPRioU9bQq4ZGxvTlpBbzHs9QvDei4Durfr/TZZlpqamtCXkFvNejxC89yKgHaItIdeImP9amPd6hOC9FwF9qLBdW0KuGRoa0paQW8x7PULw3ouAtiEOXUI41csq5r0eIXjvRUCvdHRpS8g1/f02o40W5r0eIXjvRUB3UNOWkGuqVZsTUgvzXo8QvPcioEu1iraEXLO0tKQtIbeY93qE4L0XAW2TxuoSwuSZWcW81yME770IaJs0VpcQJs/MKua9HiF470VAV8X/ucGyTLFY1JaQW8x7PULw3ouAXrYqDlUGBga0JeQW816PELz3IqB7q/4P1meZ6elpbQm5xbzXIwTvvQjo5Y5ubQm5JoSeRFYx7/UIwXsvArrgjmhLyDWVipU5amHe6xGC914EdMmtakvINcvLy9oScot5r0cI3nsR0FYHrUsI9aBZxbzXIwTvvQhoq4PWJYR60Kxi3usRgvdeBPQRq4NWpVQqaUvILea9HiF470VAH7Y6aFX6+mzKMS3Mez1C8N6LgO6xOmhVZmZmtCXkFvNejxC839bMRnEc9wN/AjwUuAvwT1EUvb9dIg512IwqmgwODmpLyC3mvR4heN9sD/o8YBL4QyAC3hfH8fPbJaLo/K9HzDIhlBtlFfNejxC8b6oHDbw3iqJ6sfIX4zheAEbaJaJoP1RRZWVlRVtCbjHv9QjB+6YCuh7OcRwXgecDtwIXt0uE1UHrEkI9aFYx7/UIwftme9DEcfxs4AJgO/CiKIpmG9cvLS2xb98+isUi1WqVXbt2cfrppzMxMUFPTw+FQoGFhQVGR0eZnZ3FOcfo6CiTk5MMV2Ypb+ujs3aYxUIfvdUyDuFQYTu91TIrHV10UKNUq3D48BATExMUi0UGBgaYnp5mYGCASqXC8vIyO3bsYGJiglKpRF9fHzMzMwwODrK8vMzKysrR9V1dXXR3dzM3N8fw8DCLi4tUKpWj67u7uymVSszPzzMyMsL8/Dyrq6tH1292TL29vQCUy2XGxsaYmppCRBgaGmJqaor+/n6q1SpLS0tH29Q6pmq1SqFQyNQxhfI+VSoVent7M3VMobxP5XKZ3bt3qx/T8RDnXLMZXQ/qhwNfAt4cRdFF9ef379/v9uzZ01JbdS771o2Um+xFv/DUnSe0D2NjJicnGRsb05aRS8x7PXzxfnx8/Ia9e/eett66lsvsoijaD/wj8LI7K6zOqvhfMJ5lurvtboJamPd6hOB9UwEdx3HPmqe6gV+1S8T22qF2NWWcAHNzc9oScot5r0cI3m8a0HEcdwBfjeO4K13+LeDJwEXHfWELLBXW5r9xMhkeHtaWkFvMez1C8L7Zi4RfAK6J49gBAjwviqKvtEtEZ22FSkdnu5ozWmRxcbGpCxZG+zHv9QjB+00DOoqiGvCu9N/WiHDVrWraaIIQblyeVcx7PULw3ot7cVgdtC4h1INmFfNejxC89yKg7X7QuoRwX9ysYt7rEYL3XgR0RYraEnJNCOVGWcW81yME770I6Ko0/YNGYwsI4cblWcW81yME770I6O6a/3eVyjLz8/PaEnKLea9HCN57EdBlq4NWZWSkbTcmNFrEvNcjBO+9COjumv+3/csyIfQksop5r0cI3nsR0AWrg1ZldXV1842MLcG81yME770IaKuD1iWEetCsYt7rEYL3XgS01UHrEkI9aFYx7/UIwXsvArrS4X+5S5bp6bGLtFqY93qE4L0XAV3zQ0ZuKRQK2hJyi3mvRwjee5GMXVbFocrCgg0xaWHe6xGC914EdLng9y3/ss7o6Ki2hNxi3usRgvdeBPT2qs2oosns7OzmGxlbgnmvRwjeexHQQmsT1xrtpdWJg432Yd7rEYL3XgS0DXHoEsKpXlYx7/UIwXsvArqvuqgtIddMTk5qS8gt5r0eIXjvRUAftvkIVfF9XrYsY97rEYL3XgS0YRiGcUe8COjO2mFtCbmmXC5rS8gt5r0eIXjvRUAvFvq0JeSasbExbQm5xbzXIwTvvQjo3qr/32RZZmpqSltCbjHv9QjBey8C2iHaEnKNiPmvhXmvRwjeexHQhwrbtSXkmqGhIW0JucW81yME770IaBvi0CWEU72sYt7rEYL3XgT0SkeXtoRc099vM9poYd7rEYL3XgR0BzVtCbmmWrU5IbUw7/UIwXsvArpUq2hLyDVLS0vaEnKLea9HCN57EdA2aawuIUyemVXMez1C8N6LgLZJY3UJYfLMrGLe6xGC914EdFX8nxssyxSLRW0JucW81yME770I6GWr4lBlYGBAW0JuMe/1CMF7LwK6t+r/YH2WmZ6e1paQW8x7PULw3ouAXu7o1paQa0LoSWQV816PELz3IqAL7oi2hFxTqViZoxbmvR4heO9FQJfcqraEXLO8vKwtIbeY93qE4L0XAW110LqEUA+aVcx7PULwflszG8VxvAt4A/BAoAR8Koqife0S0X9kgbmi/3eWyioTExPs3r1bW0YuMe/1CMH7ZnvQlwBfAp4IvA/4dBzHZ7RLxBGrg1alVCppS8gt5r0eIXjfVA8aeHUURd9LH18dx/H/BZ4GXNMOEYetDlqVvj6bckwL816PELxvqgfdEM51OoGD7RLRY3XQqszMzGhLyC3mvR4heN9sD/oocRzfD7gvcGXj80tLS+zbt49isUi1WmXXrl2cfvrpTExM0NPTQ6FQYGFhgdHRUWZnZ3HOMTo6yuTkJDWE7dUlOmuHWSz00Vst4xAOFbbTWy2z0tFFBzVKtQqHDw8xMTFBsVhkYGCA6elpBgYGqFQqLC8vs2PHDiYmJiiVSvT19TEzM8Pg4CDLy8usrKwcXd/V1UV3dzdzc3MMDw+zuLhIpVI5ur67u5tSqcT8/DwjIyPMz8+zurp6dP1mx9Tb2wskMwePjY0xNTWFiDA0NMTU1BT9/f1Uq1WWlpaOtql1TL29vRw4cCBTxxTK+9TZ2cnBgwczdUyhvE+1Wo1yuax+TMdDnHOthHMR+Arw8yiKzmlct3//frdnz56m22rksm/dSLnJSo4XnrrzhPZhbMzk5GQQMxxnEfNeD1+8Hx8fv2Hv3r2nrbeu1TK7C4FB4HV3VlQjRfuhiiorKyvaEnKLea9HCN43PcQRx/HrgWcBj4iiqK2DxlYHrUsI9aBZxbzXIwTvm+pBx3H8OuDtwBOiKLq53SLsftC6hHBf3Kxi3usRgveb9qDjOB4BPgRMABfGcVwg+bHKbBRFT2mHiFVp+Vql0Ua6uqzMUQvzXo8QvN80GaMomgZkK0Wsiv8F41mmu9vuJqiFea9HCN57cS+O7bVD2hJyzdzcnLaE3GLe6xGC914E9FKhR1tCrhkeHtaWkFvMez1C8N6LgO6s+V/ukmUWFxe1JeQW816PELz3IqC3uaq2hFwTwo3Ls4p5r0cI3nsR0FYHrUsI9aBZxbzXIwTvvQhoq4PWJYR60Kxi3usRgvdeBHRFitoSck0I5UZZxbzXIwTvvQjoqv1QRZUQblyeVcx7PULw3ouA7q75P3ljlpmfn9eWkFvMez1C8N6LgC5bHbQqIyMj2hJyi3mvRwjeexHQ3VYHrUoIPYmsYt7rEYL3XgR0weqgVVldXdWWkFvMez1C8N6LgLY6aF1CqAfNKua9HiF470VAWx20LiHUg2YV816PELz3IqArHf6Xu2SZnh67SKuFea9HCN57EdA1P2TklkKhoC0ht5j3eoTgvRfJ2GVVHKosLNgQkxbmvR4heO9FQJcLvdoScs3o6Ki2hNxi3usRgvdeBPT2qs2oosns7Ky2hNxi3usRgvdeBLTgtCXkGufMfy3Mez1C8N6LgLYhDl1CONXLKua9HiF470VA91X9n3omy0xOTmpLyC3mvR4heO9FQB/u6NSWkGt6e+0MRgvzXo8QvPcioA3DMIw74kVAd9YOa0vINeVyWVtCbjHv9QjBey8CerHQpy0h14yNjWlLyC3mvR4heO9FQPdW/f8myzJTU1PaEnKLea9HCN57EdAO0ZaQa0TMfy3Mez1C8N6LgD5U2K4tIdcMDQ1pS8gt5r0eIXjvRUDbEIcuIZzqZRXzXo8QvPcioFc6urQl5Jr+fpvRRgvzXo8QvPcioDuoaUvINdWqzQmphXmvRwjeb9MWAFCqVVhq8t7ZF99wsKntXnjqzjuhKF8sLS0FMQV9FjHv9QjBey960DZprC4hTJ6ZVcx7PULw3ouAtkljdQlh8sysYt7rEYL3XgR0VfyfGyzLFItFbQm5xbzXIwTvvQjoZaviUGVgYEBbQm4x7/UIwXsvArq3uqQtIddMT09rS8gt5r0eIXjfdEDHcXyPOI6fsRUilju6t6JZo0lC6ElkFfNejxC837TMLo7j5wHnAI8F/hG4st0iCu5Iu5s0WqBSqWhLyC3mvR4heN9MD/oHwLOAHwErWyGi5Fa3olmjSZaXl7Ul5BbzXo8QvN+0Bx1F0U8A4jieha2ZftvqoHUJoR40q5j3eoTgfSu/JDxuOC8tLbFv3z6KxSLVapVdu3Zx+umnMzExQU9PD4VCgYWFBUZHR5mdncU5x+joKJOTkwxXZilv66OzdpjFQh+91TIO4VBhO73VMisdXXRQo1SrsLCtn/4jC1SlwHJHF73VJZY7uim4I5Tc6tH1Bw9CX18fMzMzDA4Osry8zMrKCjt27GBiYoKuri66u7uZm5tjeHiYxcVFKpXK0fXd3d2USiXm5+cZGRlhfn6e1dXVo+s3O6b6fGflcpmxsTGmpqYQEYaGhpiamqK/v59qtcrS0tLRNovFIgMDA0xPTzMwMEClUmF5efno+lKptCXHVK1WKRQKmTqmUN6nSqVCb29vpo4plPepXC6ze/du9WM6HuJcc53iOI6vBX4ZRdGL11u/f/9+t2fPnqbaWsvl3/oZi9t0BuztJ+Fw8OBBdu40HzQw7/Xwxfvx8fEb9u7de9p667wosztsddCq9PXZlGNamPd6hOB9KwHdAVsz9UmP1UGrMjMzoy0ht5j3eoTgfSsBXUj/tZ1DHTajiiaDg4PaEnKLea9HCN63EtAD6b+2U3T+1yNmmRDKjbKKea9HCN43HdBRFD0IOHMrRBTthyqqrKxsSXm70QTmvR4heN/SRcIoirYkSa0OWpcQ6kGzinmvRwjee1HFYfeD1iWE++JmFfNejxC89yKgV8WLmbdyS1eXlTlqYd7rEYL3ngR0SVtCrunutrsJamHe6xGC914E9PbaIW0JuWZubk5bQm4x7/UIwXsvAnqp0KMtIdcMDw9rS8gt5r0eIXjvRUB31vwvd8kyi4uL2hJyi3mvRwjeexHQ21xVW0KuCeHG5VnFvNcjBO+9CGirg9YlhHrQrGLe6xGC914EtNVB6xJCPWhWMe/1CMF7LwK6IkVtCbkmhHKjrGLe6xGC914EdNV+qKJKqWR16FqY93qE4L0XAd1d8/+uUllmfn5eW0JuMe/1CMF7L7quZcU66ItvONjW9kKcQmtkZERbQm4x7/UIwXtPetBWB61JCD2JrGLe6xGC914EdMHqoFVZXV3VlpBbzHs9QvDei4C2OmhdQqgHzSrmvR4heO9FQFsdtC4h1INmFfNejxC89yKgKx3+l7tkmZ4eu1mVFua9HiF470VA1/yQkVsKhS2ZrN1oAvNejxC89yIZu6yKQ5WFBRti0sK81yME770I6HKhV1tCrhkdHdWWkFvMez1C8N6LgN5etRlVNJmdndWWkFvMez1C8N6LgBactoRc45z5r4V5r0cI3nvyU+/8DXE0+xPzk/HT8RBO9bKKea9HCN570YPuq/o/9UyWmZyc1JaQW8x7PULw3ose9OGOTm0JbaPdN186GfT25u8MxhfMez1C8N6LHrRhGIZxR7wI6M7aYW0JuaZcLmtLyC3mvR4heO9FQC8W+rQl5JqxsTFtCbnFvNcjBO+9COjeqv/fZFlmampKW0JuMe/1CMF7Ly4SOkRbgre0ctHxREvyRMx/Lcx7PULw3ouAPlTYri0hE5xobfXQ0NBWyDGawLzXIwTvbYjDCOJUL6uY93qE4L0XAb3S0aUtIdf099uMNlqY93qE4L0XQxwd1LQl5Iq1QyE91TJLhTve8jXEGcpDo1q1+Ti1CMF7L3rQpVpFW0KuMf/1WFpa0paQW0Lw3osetE0aq8tG/vt0Q6esEsLEpVklBO+bDug4jl8NnAnMAa+Noui2donoP7LAXNH/K6pZ5WT53+7APxkliFvNxMQEu3fv1paRS0LwvqmAjuP4lcAT0n8vBS6P4/hhURS15Yaq81MH4W4W0Fr45v9W3HDK17OBW2+91fuQyCoheL9pQMdxvA34U+CPoiiqxXG8D7gQeBzwtXaIWPj1bfTe7ZR2NGWcAHfW/xDv4OcLt9xyi7aE3BKC9830oB8K3A34NkAURZU4jm+ijQHd4ayKQxPz/xjt/rLZrEe+urra1v3VycLwz1azVd63k2YC+h7AoSiKGicOnCcJ7aMsLi6Wr7/++qNVIcVicapUKk03I+LBD3zASEkONrWt0X4q5v+WMT5+/KC8//3vPzI+Pt527x/Ywq+YN9OYVbbK+xNgw3GWZgK6nzuW49WA5cYnnvSkJ9kt6QzDMNpIM3XQB4GuOI4HG57rAm7eGkmGYRgGNBfQ3wGqJEMdde4FfHMrBBmGYRgJmwZ0FEUHgcuAcwDiOH4G8KMoir6xxdoMIzfEcez/vS+Nk06zP1R5CfDJOI6/DfwKeHY7dh7H8bOBNwBlYBA
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment