Last active
October 22, 2024 14:51
-
-
Save jonahpearl/aa757555488d1fe7e8743def0e29bc38 to your computer and use it in GitHub Desktop.
2nd Vassiliev invariant for a 100-vertex trefoil knot
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import time | |
import matplotlib.pyplot as plt | |
# See: https://x.com/AlexanderRKlotz/status/1848152886443753574 | |
# With h/t to chatgpt. | |
""" | |
Output should look sth like: | |
> Original: 1.613 seconds | |
> [warning that only affects the diagonal of wmat so shouldn't matter] | |
> New: 0.074 seconds | |
""" | |
def torgen(N,p,q): | |
step=2*np.pi/(N) | |
th=np.arange(0,2*np.pi,step) | |
r=np.cos(th*q)+2 | |
x=4*r*np.cos(p*th) | |
y=4*r*np.sin(p*th) | |
z=-4*np.sin(q*th) | |
knot=np.zeros((N,3)) | |
knot[:,0]=np.transpose(x) | |
knot[:,1]=np.transpose(y) | |
knot[:,2]=np.transpose(z) | |
return knot | |
def og_vas(knot, closed): | |
""" | |
Not sure if I copied this right, but it runs, at least. | |
""" | |
N=len(knot) | |
wmat=np.zeros((N,N)) | |
k2=np.roll(knot, 1, axis=0) | |
k3=np.roll(knot, -1, axis=0) | |
dk=(k2-k3)/2 | |
if closed==0: | |
dk[-1,:]=knot[-1,:]-knot[-2,:] | |
dk[0,:]=k2[0,:]-knot[0,:] | |
for i in range(0,N): | |
for j in range(0,N): | |
if i>j: | |
wmat[i,j]=np.dot(np.cross(dk[i,:],dk[j,:]),knot[i,:]-knot[j,:])/np.linalg.norm(knot[i,:]-knot[j,:])**3 | |
SLL=0 | |
for i in range(3,N): | |
for j in range(2,i): | |
for k in range(1,j): | |
t1=wmat[i,k] | |
for l in range(0,k): | |
t2=wmat[j,l] | |
SLL=SLL+t1*t2/(8*np.pi) | |
# q=q+1 | |
v2=SLL/np.sqrt(12*np.pi) | |
return v2 | |
def SLL_indices(N): | |
indices = [] | |
for i in range(3, N): | |
for j in range(2, i): | |
for k in range(1, j): | |
indices.append((i, j, k)) | |
indices = np.array(indices) | |
return indices[:, 0], indices[:, 1], indices[:, 2] | |
def new_vas(knot, closed): | |
N = len(knot) | |
k2 = np.roll(knot, 1, axis=0) | |
k3 = np.roll(knot, -1, axis=0) | |
dk = (k2 - k3) / 2 | |
if closed == 0: | |
dk[-1, :] = knot[-1, :] - knot[-2, :] | |
dk[0, :] = k2[0, :] - knot[0, :] | |
# Vectorized computation of the wmat matrix | |
i_indices, j_indices = np.triu_indices(N, k=-1) | |
cross_products = np.cross(dk[i_indices], dk[j_indices]) | |
vector_diffs = knot[i_indices] - knot[j_indices] | |
norms = np.linalg.norm(vector_diffs, axis=1) ** 3 | |
dot_products = np.einsum('ij,ij->i', cross_products, vector_diffs) | |
wmat = np.zeros((N, N)) | |
wmat[i_indices, j_indices] = dot_products / norms | |
wmat = wmat.T | |
wmat[np.isnan(wmat)] = 0 | |
# Precompute cumulative sums for each row of wmat, this speeds things up a lot. | |
cumsum_wmat = np.cumsum(wmat, axis=1) | |
# Initialize SLL | |
SLL = 0.0 | |
i_indices, j_indices, k_indices = SLL_indices(N) | |
t1_values = wmat[i_indices, k_indices] | |
sum_t2_values = cumsum_wmat[j_indices, k_indices-1] # Adjusted index for cumulative sum | |
SLL = np.sum(t1_values * sum_t2_values) | |
# Final normalization for the Vassiliev invariant | |
final_value = SLL / np.sqrt(12 * np.pi) / (8 * np.pi) | |
return final_value | |
knot = torgen(100,3,2) | |
start = time.perf_counter() | |
og_vas(knot, 1) # ~1.4 sec | |
stop = time.perf_counter() | |
print(f"Original: {(stop - start):.3f} seconds") | |
start = time.perf_counter() | |
new_vas(knot, 1) # ~0.15 sec | |
stop = time.perf_counter() | |
print(f"New: {(stop - start):.3f} seconds") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment