Last active
April 29, 2023 13:32
-
-
Save jonasmalacofilho/5226596 to your computer and use it in GitHub Desktop.
Adapted Needleman-Wunsch algorithm for general array alignment implemented in Haxe (3).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
Adapted Needleman-Wunsch algorithm for general array alignment | |
If NeedlemanWunsch is used as entry point the unit tests are executed | |
Copyright (c) 2013, Jonas Malaco Filho | |
All rights reserved. | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions are met: | |
- Redistributions of source code must retain the above copyright notice, | |
this list of conditions and the following disclaimer. | |
- Redistributions in binary form must reproduce the above copyright notice, | |
this list of conditions and the following disclaimer in the documentation | |
and/or other materials provided with the distribution. | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
POSSIBILITY OF SUCH DAMAGE. | |
This is a BSD 2-clause license. Information available at: | |
http://opensource.org/licenses/BSD-2-Clause. | |
**/ | |
class NeedlemanWunsch<T> { | |
public var alignedA( default, null ): Array<Null<T>>; | |
public var alignedB( default, null ): Array<Null<T>>; | |
public var distance( default, null ): Float; | |
public var length( default, null ): Int; | |
/** | |
Global alignment of two arrays, using a modified version of the quadratic running time | |
Needleman-Wunsch algorithm with gap penalties | |
Params: | |
dist( a, b ) should give the (edit) distance between a and b | |
skip( a, b, c ) should give (an estimate of) the penalty incured when skipping b | |
a (nullable) is the previous element | |
c (nullable) is the next element | |
Return: | |
A Alignment<T> object, with both a and b aligned arrays and the (edit) distance computed | |
**/ | |
public static function globalAlignment<T>( a: Array<T>, b: Array<T>, dist: T -> T -> Float, | |
?skip: Null<T> -> T -> Null<T> -> Float): NeedlemanWunsch<T> { | |
// array lengths | |
var n = a.length; | |
var m = b.length; | |
// F (?) matrix initialization, size( F ) = n+1, m+1 | |
// *** the corresponding a and b elements for Fij are a[i - 1] and b[i - 1] *** | |
var F = buildMatrix( n + 1, m + 1, function ( i, j ) return Math.POSITIVE_INFINITY ); | |
// pre-computed distance matrix, size( D ) = n+1, m+1 | |
var D = buildMatrix( n + 1, m + 1, function ( i, j ) return i*j != 0 ? dist( a[i - 1], b[j - 1] ) : Math.NaN ); | |
// default gap penalty function is cte 1. (as in Levenshtein distance) | |
if ( skip == null ) | |
skip = function ( a, b, c ) return 1.; | |
// basis | |
F[0][0] = 0.; | |
for ( i in 1...n+1 ) | |
F[i][0] = F[i - 1][0] + skip( ( i > 1 ? a[i - 2] : null ), a[i - 1], ( i < n ? a[i] : null ) ); | |
for ( j in 1...m+1 ) | |
F[0][j] = F[0][j - 1] + skip( ( j > 1 ? b[j - 2] : null ), b[j - 1], ( j < m ? b[j] : null ) ); | |
// recursion | |
// for i,j <=> a[i - 1],b[j - 1] there are 3 possible outcomes: | |
// move down and left, a[i - 1] aligns with b[j - 1], AKA "match" | |
// move down, a[i - 1] aligns with a gap in b, AKA "skipA" (one element of a is discarted), AKA "delete" | |
// move left, b[j - 1] aligns with a gap in a, AKA "skipB" (one element of b is discarted), AKA "insert" | |
for ( i in 1...n+1 ) | |
for ( j in 1...m+1 ) { | |
var match = F[i - 1][j - 1] + D[i][j]; | |
var skipA = F[i - 1][j] + skip( ( i > 1 ? a[i - 2] : null ), a[i - 1], ( i < n ? a[i] : null ) ); | |
var skipB = F[i][j - 1] + skip( ( j > 1 ? b[j - 2] : null ), b[j - 1], ( j < m ? b[j] : null ) ); | |
F[i][j] = Math.min( match, Math.min( skipA, skipB ) ); | |
} | |
// trace( F.join( '\n' ) ); | |
if ( !Math.isFinite( F[n][m] ) ) | |
throw 'Supplied distance or skip penalty functions resulted in infeasible alignment'; | |
// alignment | |
var aligA = new List(); | |
var aligB = new List(); | |
var i = n; | |
var j = m; | |
while ( i > 0 && j > 0 ) { | |
if ( Math.isFinite( F[i - 1][j - 1] ) && F[i][j] == F[i - 1][j - 1] + D[i][j] ) { | |
// results from match | |
aligA.push( a[--i] ); | |
aligB.push( b[--j] ); | |
} | |
else if ( Math.isFinite( F[i - 1][j] ) | |
&& F[i][j] == F[i - 1][j] + skip( ( i > 1 ? a[i - 2] : null ), a[i - 1], ( i < n ? a[i] : null ) ) ) { | |
// results from skipA | |
aligA.push( a[--i] ); | |
aligB.push( null ); | |
} | |
else if ( Math.isFinite( F[i][j - 1] ) | |
&& F[i][j] == F[i][j - 1] + skip( ( j > 1 ? b[j - 2] : null ), b[j - 1], ( j < m ? b[j] : null ) ) ) { | |
// results from skipB | |
aligA.push( null ); | |
aligB.push( b[--j] ); | |
} | |
else | |
throw 'Internal error in alignment reconstruction; F=\n' + F.join( '\n' ); | |
} | |
while ( i > 0 || j > 0 ) { | |
aligA.push( i > 0 ? a[--i] : null ); | |
aligB.push( j > 0 ? b[--j] : null ); | |
} | |
return new NeedlemanWunsch( Lambda.array( aligA ), Lambda.array( aligB ), F[n][m] ); | |
} | |
static function buildMatrix<A>( n: Int, m: Int, init: Int -> Int -> A ) { | |
var M = []; | |
for ( i in 0...n ) { | |
var _i = n - 1 - i; | |
M[_i] = []; | |
for ( j in 0...m ) { | |
var _j = m - 1 - j; | |
M[_i][_j] = init( _i, _j ); | |
} | |
} | |
return M; | |
} | |
function new( a: Array<Null<T>>, b: Array<Null<T>>, dist: Float ) { | |
if ( a.length != b.length ) | |
throw 'a.length != b.length'; | |
alignedA = a; | |
alignedB = b; | |
length = alignedA.length; | |
distance = dist; | |
} | |
// Testing entry point | |
static function main() { | |
var runner = new haxe.unit.TestRunner(); | |
runner.add( new NeedlemanWunschTest() ); | |
runner.run(); | |
} | |
} | |
class NeedlemanWunschTest extends haxe.unit.TestCase { | |
// Tests | |
// Test alignment using Levenshtein distance penalties | |
function testLevenshteinDistance() { | |
var dist = function ( a, b ) return a==b ? 0 : 1; | |
var skip = function ( a, b, c ) return 1; | |
assertEquals( '3|kitten_|sitting', stAl( 'kitten', 'sitting', dist, skip ) ); | |
assertEquals( '6|industry|interest', stAl( 'industry', 'interest', dist, skip ) ); | |
assertEquals( '3|horse|ror__', stAl( 'horse', 'ror', dist, skip ) ); | |
assertEquals( '1|start|_tart', stAl( 'start', 'tart', dist, skip ) ); | |
assertEquals( '1|finish|finis_', stAl( 'finish', 'finis', dist, skip ) ); | |
assertEquals( '1|skipped|ski_ped', stAl( 'skipped', 'skiped', dist, skip ) ); | |
} | |
// Test different skip functions, specially one that does not allow | |
// gaps in the beginning or end | |
function testSkipFunction() { | |
var dist = function ( a, b ) return a==b ? 0 : 1; | |
var skip = function ( a, b, c ) { | |
if ( a == null ) | |
return Math.POSITIVE_INFINITY; | |
else if ( c == null ) | |
return Math.POSITIVE_INFINITY; | |
else if ( b == a || b == c ) | |
return 0.; | |
else | |
return 1.; | |
}; | |
assertEquals( '2|start|t_art', stAl( 'start', 'tart', dist, skip ) ); | |
assertEquals( '2|finish|fini_s', stAl( 'finish', 'finis', dist, skip ) ); | |
assertEquals( '0|skipped|ski_ped', stAl( 'skipped', 'skiped', dist, skip ) ); | |
// expect exception if b is only one char long and a has more than one char | |
assertRaises( null, stAl( 'ar', 'b', dist, skip ) ); | |
assertEquals( '1|a|b', stAl( 'a', 'b', dist, skip ) ); | |
} | |
// Helpers | |
// Assert exception | |
macro static function assertRaises( expected: haxe.macro.Expr, test: haxe.macro.Expr ) { | |
return macro { | |
var _exp: Null<Dynamic> = $expected; | |
var err = _exp != null? 'Expected exception ' + _exp: 'Expected exception'; | |
var done = false; | |
try { | |
$test; | |
done = true; | |
} | |
catch ( e: Dynamic ) { | |
if ( _exp != null && Std.string( e ) != Std.string( _exp ) ) | |
throw err; | |
} | |
if ( done ) | |
throw err; | |
}; | |
} | |
// Global alignment of strings | |
static function stAl( a: String, b: String, dist: Int -> Int -> Float, skip: Int -> Int -> Int -> Float ): String { | |
var _a = stAr( a ); | |
var _b = stAr( b ); | |
var nwa = NeedlemanWunsch.globalAlignment( _a, _b, dist, skip ); | |
return stRes( nwa ); | |
} | |
// String to Array<Int> | |
static function stAr( s: String ): Array<Int> { | |
var bytes = haxe.io.Bytes.ofString( s ); | |
var a = []; | |
for ( i in 0...bytes.length ) { | |
a.push( bytes.get( i ) ); | |
} | |
return a; | |
} | |
// Array<Int> to String | |
static function arSt( a: Array<Int>, ?nullValue = '_' ): String { | |
var bytes = haxe.io.Bytes.alloc( a.length ); | |
var nl = nullValue.charCodeAt( 0 ); | |
for ( i in 0...a.length ) | |
bytes.set( i, a[i] == null ? nl : a[i] ); | |
return bytes.toString(); | |
} | |
// Alignment results printer | |
static function stRes( x: NeedlemanWunsch<Int>, ?sep='|', ?nl='_' ): String { | |
return '${x.distance}$sep${arSt( x.alignedA, nl )}$sep${arSt( x.alignedB, nl )}'; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment