Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save jonastemplestein/6e562374ac5689f6bedb8e1831fb0fd6 to your computer and use it in GitHub Desktop.
Save jonastemplestein/6e562374ac5689f6bedb8e1831fb0fd6 to your computer and use it in GitHub Desktop.
Cheat sheet for openai responses API typescript types
/**************************************************************************************************
* OPENAI RESPONSES API – PRACTICAL OVERVIEW (concise engineering primer)
*
* NOTE: This is a playground file for exploring OpenAI's Responses API types.
* You'll need to install: `pnpm add openai ts-essentials`
* The imports are intentionally left for hover exploration.
*
* ── TL;DR ────────────────────────────────────────────────────────────────────────────────────
* 1. You send *input items* ➜ `POST /v1/responses` (or `.stream()` variant).
* 2. The server returns *output items* (complete array ↔ non-streaming; chunks ↔ streaming).
* 3. Every output item can be echoed back later as an input item – that is how you maintain
* conversation state across turns.
* 4. A "message" is a special (deeper) structure: it's an input/output item whose `content`
* is itself an array of *content items* (text, image, file, …). Think slack thread.
*
* Key docs:
* • REST reference: https://platform.openai.com/docs/api-reference/responses
* • Streaming format: https://platform.openai.com/docs/api-reference/responses/streaming
**************************************************************************************************/
/* -------------------------------------------------------------------------------------------------
IMPORT THE ACTUAL TYPES – you already have them in node_modules when using the official SDK.
(Path may differ if package versions change.)
------------------------------------------------------------------------------------------------- */
import type {
ResponseCreateParams, // payload you POST
Response, // full result (non-streaming)
ResponseStreamEvent, // SSE events
ResponseOutputItem, // indiv. output element
ResponseInputItem // indiv. input element
} from "openai/resources/responses/responses.mjs";
import { OpenAI } from "openai";
import type { Prettify } from "ts-essentials";
// Create prettified type aliases for better hover experience
export type ResponseCreateParamsPretty = Prettify<ResponseCreateParams>;
export type ResponsePretty = Prettify<Response>;
export type ResponseStreamEventPretty = Prettify<ResponseStreamEvent>;
export type ResponseOutputItemPretty = Prettify<ResponseOutputItem>;
export type ResponseInputItemPretty = Prettify<ResponseInputItem>;
/* ────────────────────────────────────────────────────────────────────────────────────────────────
1. STREAMING RESPONSES
------------------------------------------------------------------------------------------------
• Call `client.responses.create({ ..., stream: true })`
• Server emits a **Server-Sent Events** stream (`Content-Type: text/event-stream`)
• Each event is typed as `ResponseStreamEvent` (union of ~60 variants, see SDK types)
• Events of interest while stitching the final answer:
- `response.output_item.added`
- `response.output_item.done`
- `response.completed` / `response.failed` / …
• The *union* contains both low-level deltas (token chunks) and high-level milestones.
• When `response.completed` arrives you have seen every output item at least once in a
`.done`, and the stream closes.
------------------------------------------------------------------------------------------------- */
/* Example: minimal pseudo-consumer */
async function _consumeStream() {
const client = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
const stream = await client.responses.create({ input: "hello", stream: true });
const outputItems: ResponseOutputItem[] = [];
for await (const ev of stream) {
if (ev.type === "response.output_item.done") {
outputItems[ev.output_index] = ev.item; // collect finalized item
}
if (ev.type === "response.completed") {
console.log("All items final:", outputItems);
}
}
}
/* ────────────────────────────────────────────────────────────────────────────────────────────────
2. OUTPUT ITEMS
------------------------------------------------------------------------------------------------
Definition: `ResponseOutputItem` (union)
• assistant message (`type:"message"`)
• tool calls (`function_call`, `file_search_call`, `mcp_call`, …)
• code interpreter calls, computer use, image generation, … (built-ins)
Important rules:
• Array order is model-chosen.
• An output item can *immediately* be turned into an input item for the next request.
(That's what you do to preserve history.)
------------------------------------------------------------------------------------------------- */
/* Quick sample */
const _sampleOutput: ResponseOutputItem = {
type: "message",
id: "msg_123",
role: "assistant",
status: "completed",
content: [{ type: "output_text", text: "Hello!", annotations: [] }]
};
/* ────────────────────────────────────────────────────────────────────────────────────────────────
3. INPUT ITEMS
------------------------------------------------------------------------------------------------
Definition: `ResponseInputItem` (union) – superset that ALSO includes the items we create.
• `message` authored by user|system|developer
• function_call_output, computer_call_output, …
Life cycle:
• On turn N you POST an array of input items ➜ OpenAI ➜ outputs turn N.
• You merge your own new context + all *relevant* output items from turn N
to build input for turn N+1.
------------------------------------------------------------------------------------------------- */
/* Turn N+1 built from previous assistant response + new user message */
const _nextTurnInput: ResponseInputItem[] = [
// 1) echo previous assistant message (as ResponseOutputMessage)
{
type: "message",
id: "msg_prev",
role: "assistant",
status: "completed",
content: [{ type: "output_text", text: "Hello!", annotations: [] }]
},
// 2) new user message
{ type: "message", role: "user", content: [{ type: "input_text", text: "How are you?" }] }
];
/* ────────────────────────────────────────────────────────────────────────────────────────────────
4. "MESSAGE" ITEM STRUCTURE
------------------------------------------------------------------------------------------------
A message is itself a container:
Message
↳ content: ContentItem[]
ContentItem (aka `ResponseInputContent` / subset of `ResponseOutputText`) can be:
• input_text / output_text – plain text
• input_image – image with {image_url|file_id, detail}
• input_file – arbitrary file blob or file_id
So hierarchy = Input|Output Item → Message → Content Items.
------------------------------------------------------------------------------------------------- */
/* Example with mixed content */
const _richUserMessage: ResponseInputItem = {
type: "message",
role: "user",
content: [
{ type: "input_text", text: "Summarise this PDF please:" },
{ type: "input_file", file_id: "file_abc123" },
{ type: "input_image", image_url: "https://example.com/chart.png", detail: "auto" }
]
};
/* ────────────────────────────────────────────────────────────────────────────────────────────────
ADVANCED EXAMPLES: Mixed Content Types
------------------------------------------------------------------------------------------------
Messages can contain rich combinations of text, images, and files. Here are practical examples:
------------------------------------------------------------------------------------------------- */
/* Example 1: Analyzing multiple documents with context */
const _documentAnalysisRequest: ResponseInputItem = {
type: "message",
role: "user",
content: [
{ type: "input_text", text: "Compare these financial reports and highlight key differences:" },
{ type: "input_file", file_id: "file_q1_report_2024" },
{ type: "input_file", file_id: "file_q1_report_2023" },
{ type: "input_text", text: "Pay special attention to revenue growth and operational costs." },
{ type: "input_image", image_url: "...", detail: "high" } // Revenue chart
]
};
/* Example 2: Assistant response with multiple content types and annotations */
const _assistantAnalysisResponse: ResponseOutputItem = {
type: "message",
id: "msg_analysis_123",
role: "assistant",
status: "completed",
content: [
{
type: "output_text",
text: "Based on my analysis of the financial reports:",
annotations: []
},
{
type: "output_text",
text: "Revenue increased by 23% year-over-year, primarily driven by...",
annotations: [
{
type: "file_citation",
file_id: "file_q1_report_2024",
filename: "Q1_2024_Financial_Report.pdf",
index: 0
}
]
}
]
};
/* Example 3: Complex user request with inline data and references */
const _dataProcessingRequest: ResponseInputItem = {
type: "message",
role: "user",
content: [
{ type: "input_text", text: "Process this CSV data and create visualizations:" },
{
type: "input_file",
file_data: "name,age,score\nAlice,25,92\nBob,30,87\nCarol,28,95", // Inline CSV
filename: "scores.csv"
},
{ type: "input_text", text: "Use this color scheme for the charts:" },
{
type: "input_image",
image_url: "https://example.com/brand-colors.png",
detail: "low" // Low detail sufficient for color reference
},
{ type: "input_text", text: "Output should match the style of this template:" },
{ type: "input_file", file_id: "file_template_xyz" }
]
};
/* Example 4: Developer instructions with user content (system context mixing) */
const _contextualRequest: ResponseInputItem[] = [
{
type: "message",
role: "developer",
content: [
{
type: "input_text",
text: "The user will provide images of receipts. Extract amounts and dates."
}
]
},
{
type: "message",
role: "user",
content: [
{ type: "input_text", text: "Here are my receipts from last month:" },
{ type: "input_image", file_id: "file_receipt_001", detail: "high" },
{ type: "input_image", file_id: "file_receipt_002", detail: "high" },
{ type: "input_image", file_id: "file_receipt_003", detail: "high" },
{ type: "input_text", text: "Please organize by date and calculate total." }
]
}
];
/* Example 5: Conversation with image generation and file outputs */
const _creativeWorkflow: ResponseInputItem[] = [
// User request
{
type: "message",
role: "user",
content: [
{ type: "input_text", text: "Create a logo based on this sketch:" },
{ type: "input_image", image_url: "data:image/jpeg;base64,...", detail: "high" },
{ type: "input_text", text: "Use these brand guidelines:" },
{ type: "input_file", file_id: "file_brand_guide" }
]
},
// Assistant uses image generation tool (output item)
{
type: "image_generation_call",
id: "img_gen_001",
status: "completed",
result: "..." // Generated logo
},
// Assistant response with the result
{
type: "message",
role: "assistant",
status: "completed",
id: "msg_logo_result",
content: [
{
type: "output_text",
text: "I've created a logo based on your sketch. Here's the result:",
annotations: []
},
{
type: "output_text",
text: "The logo incorporates the blue (#0066CC) from your brand guidelines...",
annotations: [
{
type: "file_citation",
file_id: "file_brand_guide",
filename: "brand_guidelines.pdf",
index: 1
}
]
}
]
}
];
/* Example 6: Error handling with mixed content */
const _errorScenario: ResponseOutputItem = {
type: "message",
id: "msg_error",
role: "assistant",
status: "completed",
content: [
{
type: "output_text",
text: "I was able to process the first document successfully:",
annotations: []
},
{
type: "refusal",
refusal:
"I cannot process the second file as it appears to contain sensitive personal information that I'm not authorized to handle."
},
{
type: "output_text",
text: "Would you like me to proceed with just the first document's analysis?",
annotations: []
}
]
};
/* ────────────────────────────────────────────────────────────────────────────────────────────────
5. FILES
------------------------------------------------------------------------------------------------
• Upload separately: `POST /v1/files` ⇒ response `{ id: "file_..." }`
• Use the file by reference: supply `file_id` inside `input_file`, or embed in
a vector store and let `file_search` tool retrieve chunks.
• Vector Store: file ➜ embeddings ➜ vector store id ➜ search via built-in tool.
------------------------------------------------------------------------------------------------- */
/* ────────────────────────────────────────────────────────────────────────────────────────────────
6. IMAGES
------------------------------------------------------------------------------------------------
• Similar pattern:
- Provide `input_image` with `image_url` (fully qualified URL or data-URI) **or**
an uploaded `file_id`.
• `detail`: "auto" | "low" | "high" influences Vision models' behaviour / cost.
------------------------------------------------------------------------------------------------- */
/* ────────────────────────────────────────────────────────────────────────────────────────────────
7. TOOL CALLING
------------------------------------------------------------------------------------------------
• When the model decides to invoke a tool it emits an OUTPUT item (e.g. `function_call`).
• For most built-in tools (web_search, file_search, image_generation, …) OpenAI
runs the tool internally and immediately follows up with a finalised item containing
the result.
• For **function tools** (your local code) YOU must:
1) detect the output item (arguments are JSON string).
2) execute the function locally.
3) POST another *input item* of type `function_call_output` with `call_id` +
JSON-stringified `output`.
• Tool registration happens per-request via the `tools` array in `ResponseCreateParams`.
------------------------------------------------------------------------------------------------- */
/* Example round-trip for a function tool */
const _functionCallOutput: ResponseInputItem.FunctionCallOutput = {
type: "function_call_output",
call_id: "call_xyz",
output: JSON.stringify({ result: 42 })
};
/* ────────────────────────────────────────────────────────────────────────────────────────────────
8. QUICK START SNIPPET
------------------------------------------------------------------------------------------------
const res = await client.responses.create({
model: "gpt-4o",
input: [
{ role: "user", type: "message", content: [{ type:"input_text", text:"Hi!" }] }
],
tools: [{ type: "function", name: "myCalculator", parameters:{ type: "object" } }]
});
console.log(res.output); // If not streaming
------------------------------------------------------------------------------------------------- */
/*
### How to explore further
1. `open openai/resources/responses/responses.d.mts` in your editor – all referenced types are there.
2. Hover the imported names in the cheat-sheet to inspect definitions.
3. Replace the sample payloads with your own and rely on TypeScript to guide you.
---
#### Reference tree (visual aid)
```
Response (REST) / Stream
└─ output: ResponseOutputItem[]
├─ Message (assistant) ← contains ContentItem[]
│ └─ ContentItem (text|img|file)
├─ FunctionToolCall ← you run locally ➜ FunctionCallOutput (input)
├─ FileSearchToolCall ← built-in
├─ WebSearchToolCall ← built-in
└─ …other tool-related items…
Input (next turn) mirrors this:
└─ ResponseInputItem[]
├─ Message (user|system|dev)
├─ FunctionCallOutput
├─ …etc
```
That's all you need to keep the moving pieces straight – happy hacking!
*/
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment